Numerical Dynamic Programming

Kenneth L. Judd
Hoover Institution

Prepared for ICE05
July 20, 2005 - lectures

Discrete-Time Dynamic Programming

e Objective:
T
E {Z m(xy, ug, t) + W(xT+1)} : (12.1.1)
t=1
— X: set of states
— D: the set of controls

— 7(x, u, t) payoffs in period ¢, for x € X at the beginning of period t,
and control u € D is applied in period ¢.

— D(z,t) C D: controls which are feasible in state x at time ¢.

— F(A; xz,u,t) : probability that z;;; € A C X conditional on time ¢
control and state

e Value function

T
V(z,t)= sup F {Z (s, us, s) + Wi(xrsr)|o, = a:} . (12.1.2)
U(z,t) o—t

e Bellman equation

V(z,t)= sup 7(x, u, t)+ E{V(xss1, t +)| = 2, us = u}
ueD(z,t)
(12.1.3)

e [ixistence: boundedness of 7 is sufficient

Autonomous, Infinite-Horizon Problem:

e Objective:

max {iﬁtw(:ﬁt, ut)} (12.1.1)
! =1

— X set of states

— D: the set of controls

— D(x) C D: controls which are feasible in state x.

— 7(x, u) payoff in period t if x € X at the beginning of period ¢, and
control v € D is applied in period .

— F(A;z,u) : probability that x© € A C X conditional on current
control w and current state x.

e Value function definition: if () is set of all feasible strategies starting at
.

V(z)=sup E {Z By,)

U(x) =0

Ty = x} : (12.1.8)

e Bellman equation for V' (x)

Viz) = Sg]?) m(x, u)+BE {V(@)z,u} = TV)(x), (12.1.9)

e Optimal policy function, U(x), if it exists, is defined by

U(z) € arg max 7(z, u) + S E{V(z")|z,u}

ueD(x)

e Standard existence theorem:

Theorem 1 If X is compact, 3 < 1, and 7 is bounded above and below,
then the map

TV = sup 7(z,u)+ BE{V(z") | z,u} (12.1.10)
ueD(x)

1s monotone i V', is a contraction mapping with modulus 3 in the space
of bounded functions, and has a unique fixed point.

Deterministic Growth Example

e Problem:

V (ko) = maxe, 3 3% Bulcy),
kt—i—l = F(/{t) — Ct (12112)
ko given

— Euler equation:
u'(c) = Bu'(cr1) F' (k1)

— Bellman equation
V(k) = max u(c) + BV (F(k) — c). (12.1.13)

— Solution to (12.1.12) is a policy function C'(k) and a value function
V (k) satistying

0=u'(C(k))F'(k) — V'(k) (12.1.15)

V(k)=u(C(k))+ BV(F(k) — C(k)) (12.1.16)

(12.1.16) defines the value of an arbitrary policy function C(k), not just
for the optimal C'(k).

e The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a first-order condition for optimality.

Stochastic Growth Accumulation

e Problem:

Vik,0) =max E {Z g U<Ct)}

ki1 = F(k?t, Qt) — G
01 = g(0t, 1)

g; . 1.1.d. random variable

ko=Fk, 0, =20.
e State variables:

— k: productive capital stock, endogenous

— 6: productivity state, exogenous

e The dynamic programming formulation is

V(k,0) = max u(c) + BE{V(F(k,0) —c,07)|0} (12.1.21)
0" =g(0,¢)

e The control law ¢ = C'(k, #) satisfies the first-order conditions

0 = u. (C(k,0)) — 8 E {u(C(k*,0)Eu(kt,07) |0}, (12.1.23)

where

k= F(k, L(k,0),0) — C(k, 6),

Objectives of this Lecture

e Formulate dynamic programming problems in computationally useful ways

e Describe key algorithms

— Value function iteration
— Policy iteration
— Gauss-Seidel methods

— Linear programming approach
e Describe approaches to continuous-state problems

— Point to key numerical steps

* Approximation of value functions
« Numerical integration methods
* Maximization methods

— Describe how to combine alternative numerical techniques and algo-

rithms

Discrete State Space Problems

e State space X = {x;,i=1,--- ,n}

e Controls D = {w;|i =1,...,m}

® g (u) = Pr(w1 = x|z, = 25, = u)

e Q'(u) = (qu(u))u : Markov transition matrix at ¢ if u; = .

Value Function iteration

e Terminal value:
VI =W(z), i=1,-- ,n.

e Bellman equation: time ¢ value function is

V! = max [m(z;, u, t) +BZ ¢;(u) Vit i=1,---,n
j=1

u

which defines value function iteration
e Value function iteration is only choice for finite-horizon problems

e Infinite-horizon problems

— Bellman equation is a set of equations for V; values:

V; = max W(xi,u)—l—BZqij(u)Vj L i=1,---.n
=1

— Value function iteration is now

n
Vikﬂzmjx W(xi,u)JrﬁZqzj(u)ij L i=1,---.,n
j=1

— Can use value function iteration with arbitrary V* and iterate & — oc.

— Error is given by contraction mapping property:

1

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).
Step 0: Make initial guess V; choose stopping criterion € > 0.
Step 1: For 1 =1, ...,n, compute

Vit = maxyep m(a,w) + B30 qi(w)V).
Step 2: If || VAL — Vf|< €, then go to step 3; else go to step 1.
Step 3: Compute the final solution, setting

U = Uvé—l—l’

P =m(x;, UY), i=1,---,n,

Ve =(1-pQ") 1P,

and STOP.
Output:

Policy Iteration (a.k.a. Howard improvement)
e Value function iteration is a slow process

— Linear convergence at rate [

— Convergence is particularly slow if 3 is close to 1.
e Policy iteration is faster

— Current guess:

— Iteration: compute optimal policy today if V* is value tomorrow:
n
k+1 ko
Uit = arg max m(x;, u) +BZ qij(u) Vil s i=1,- o,
j=1

— Compute the value function if the policy U**! is used forever, which is
solution to the linear system

n
%k—i_l =T (xz'a Uz-k—i_l) + 6 Z q@j(UZk—H) ‘/jk—i_l? 1= 17 I
j=1
e Comments:

— Policy iteration depends on only monotonicity
— Policy iteration is faster than value function iteration

x If initial guess is above or below solution then policy iteration is
between truth and value function iterate

x Works well even for 3 close to 1.

10

Gaussian acceleration methods for infinite-horizon models

e Key observation: Bellman equation is a simultaneous set of equations
n
V;:méxx W(xi,U)—l—ﬁZ Gjw)Vil,i=1,---,n
j=1

e Idea: Treat problem as a large system of nonlinear equations
e Value function iteration is the pre-Gauss-Jacobi iteration
n
k+1 k.
VT = max W(xi,u)—i—ﬁz Gj(u) Vi'l ,i=1,---n
j=1
e True Gauss-Jacobi is

k
VR m(@i,w) + B ¢ij(u) V]
' u 1 — Bgii (u)

Li=1,.n

e pre-Gauss-Seidel iteration

— Value function iteration is a pre-Gauss-Jacobi scheme.
— Gauss-Seidel alternatives use new information immediately

* Suppose we have V!

* At each x;, given Vf“ for j < i, compute V! in a pre-Gauss-Seidel
fashion

Vi = max m(zi,u)+ 5 Z Qij(u)‘/jjg—{—l +0 Z Qij(u)vf (12.4.7)

J<t J2i

x Tterate (12.4.7) fori =1, ..,n

11

e Gauss-Seidel iteration

— Suppose we have V!
— If optimal control at state ¢ is u, then Gauss-Seidel iterate would be
0
qu‘ qu(u)vj 1y Zj>z' qij(u)Vf
1 — Bgii(u)
— Gauss-Seidel: At each z;, given Vf“ for j < 4, compute V"™
(i, u)+ BY qw(W+ B iawV
max j J J
u — Bqii(u)
— Iterate this fori =1,...n

VA = m(ai,u) +

(+1 _
Vit =

e Gauss-Seidel iteration: better notation

— No reason to keep track of £, number of iterations

— At each x;,

V e max (i, u) + 52;@ qij(w)V; + 62]’>i qij(uw)V;
Z u 1 — Bgij(u)
— Iterate this for7 =1,..,n, 1,, etc.

12

Upwind Gauss-Seidel
e Gauss-Seidel methods in (12.4.7) and (12.4.8)

— Sensitive to ordering of the states.

— Need to find good ordering schemes to enhance convergence.
e Example:

— Two states, x1 and x5, and two controls, u; and us

* U; causes state to move to x;, 1 = 1,2

x Payofts:
m(21,w) = —1, m(21,u2) =0, (12.4.9)
m(x2,u1)= 0, m(w2,up) = 1. -
x 5=0.9.
— Solution:

* Optimal policy: always choose us, moving to xo

* Value function:
V(Qfl) — 9, V(QSQ) = 10.

% T9 1S the unique steady state, and is stable
— Value iteration with V9(z;) = V%(a5) = 0 converges linearly:
Vl(xl) =0, Vl(IZ) =1, Ul(xl) =2, U1<.732) = 2,

VQ(CCl) = 0.9, VQ(CUQ) = 1.9, UQ(CUl) = 2, Uz(ng) =2,
VB(l’l) = 171, VB(l’Q) = 271, U3<.731) = 2, U3($2 = 27

— Policy iteration converges after two iterations

Vi) =0, Viz) =1, Ul(zy) =2, Ul(zn) =2,
V2($1) — 97 V2<'732) = 10, U2($1) — 27 Uz(xQ) = 2,

13

e Upwind Gauss-Seidel

— Value function at absorbing states is trivial to compute
% Suppose s is absorbing state with control u
x V(s)=m(s,u)/(1—=p).
— With absorbing state V' (s) we compute V (§') of any s’ that sends
system to s.

V(s =m(s,u)+ LV (s)

— With V (s), we can compute values of states s” that send system to
s’: ete.

14

e Alternating Sweep

— It may be difficult to find proper order.

— Idea: alternate between two approaches with different directions.
W =VF
Wi =max, m(v,u)+ 8 qj(w)W;, i=1,2,3,...n
Wi =max, m(z;,u)+ 83 qi(w)W;, i=n,n—1,..,1
VEL = W

— Will always work well in one-dimensional problems since state moves
either right or left, and alternating sweep will exploit this half of the

time.

— In two dimensions, there may still be a natural ordering to be exploited.
e Simulated Upwind Gauss-Seidel

— It may be difficult to find proper order in higher dimensions
— Idea: simulate using latest policy function to find downwind direction

x Simulate to get an example path, x1, xo, 3, 4, ..., T,

x Execute Gauss-Seidel with states x,,, xym_1, Tm_2,, 21

15

Linear Programming Approach

e [f D is finite, we can reformulate dynamic programming as a linear pro-

gramming problem.

e (12.3.4) is equivalent to the linear program

. n
miny; } ;- Vi

12.4.10
st. Vi>m(xiu)+ 52?:1 C]z‘j(u)vj, Vi,u € D, ()

e Computational considerations

— (12.4.10) may be a large problem
— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela
Pucci de Farias and Ben van Roy has revived interest.

16

Continuous states: discretization
e Method:
— “Replace” continuous X with a finite
X =Azx;,i=1,--- ,n}CX
— Proceed with a finite-state method.
e Problems:

— Sometimes need to alter space of controls to assure landing on an x in
X.

— A fine discretization often necessary to get accurate approximations

17

Continuous States: Linear-Quadratic Dynamic Programming

e Problem:

T
1 1 1
Il’hatJX Z ﬁt (5-77;@#7315 + U;Rﬂ?t + 5’&2—515’&15) + §$;+1WT+1$T—|—1
t=0

(12.6.1)

Tip1 = Ay + By,
e Bellman equation:

1 1
V(I, t) = Imax §TQt + U;Rﬂ? + §U2—Stut + BV(AtCI? + Btut, t+ 1)
ut
(12.6.2)

F'inite horizon
e Key fact: We know solution is quadratic, solve for the unknown coefficients
e The guess V(z,t) = 2" Wiz implies fo.c.
0 = Syuy + Ry + BB, W1 (A + Ba),
— Fl.o.c. implies the time ¢ control law

up=—(S; + BB Wi By) Ry + BB Wi 1 A)r - (12.6.3)
= Ut.flj.

— Substitution into Bellman implies Riccati equation for Wy:
Wi = Q; + BA Wi A + (BB Wi Ar + R U, (12.6.4)

— Value function method iterates (12.6.4) beginning with known Wr
matrix of coefficients.

18

Autonomous, Infinite-horizon case.
o Assume Ry, =R, Q;=Q, 5; =5, A4, = A, and B; =B
e The guess V(x) = %CETW£U implies the algebraic Riccati equation

W=Q+BATWA—(BBTWA+R") (12.6.5)
x(S+BB'"WB) Y (BB'"WB+R").

e T'wo convergent procedures:

— Value function iteration:

Wy @ a negative definite initial guess
Witi=Q + BA'W,A— (BB'"W, A+ R")
x(S+BB'W,.B) HBB'W,B+R'"). (12.6.6)

— Policy function iteration:

Wy : initial guess
Uis1=—(S 4+ BB'"W;B) (R + BB'W;A) : optimal policy for W;

1+1 1 — 5

- value of Uj;

19

Lessons

e We used a functional form to solve the dynamic programming problem
e We solve for unknown coefficients
e We did not restrict either the state or control set

e Can we do this in general?

Continuous Methods for Continuous-State Problems

e Basic Bellman equation:

V(z) = max w(u,z)+ S E{V(z")|z,u)} = (TV)(x). (12.7.1)

ueD(x)
— Discretization essentially approximates V' with a step function

— Approximation theory provides better methods to approximate contin-

uous functions.
e (General Task

— Find good approximation for V'

— Identify parameters

20

Parametric Approach: Approximating V (z)
e Choose a finite-dimensional parameterization
V(z)=V(z;a), a € R" (12.7.2)
and a finite number of states

X =A{x1,29, -+, 2}, (12.7.3)

— polynomials with coefficients a and collocation points X
— splines with coefficients a with uniform nodes X

— rational function with parameters ¢ and nodes X

— neural network

— specially designed functional forms

e Objective: find coeflicients a € R™ such that V(x, a) “approximately”
satisfies the Bellman equation.

e Data for approximating V' (z)

— Conventional methods just generate data on V' (z;):

v; = max 7(u,x; +B/ " a)dF (7|, u) (12.7.5)
u€D(x)

— Envelope theorem:

x If solution u is interior,
v = mulua) + B [Viatsa)dBa a0
« If solution u is on boundary
=t mlu,z) + 8 [Vi a)dF el
where 1 is a Kuhn-Tucker multiplier

— Since computing v;- is cheap, we should include it in data
e We review approximation methods.

21

Approximation Methods

e General Objective: Given data about a function f(x) (which is difficult to
compute) construct a simpler function g(x) that approximates f(x).

e Questions:

— What data should be produced and used?

— What family of “simpler” functions should be used?
— What notion of approximation do we use?

— How good can the approximation be?

— How simple can a good approximation be?
e Comparisons with statistical regression

— Both approximate an unknown function
— Both use a finite amount of data
— Statistical data is noisy; we assume here that data errors are small

— Nature produces data for statistical analysis; we produce the data in

function approximation

— Our approximation methods are like experimental design with very

small experimental error

22

Types of Approximation Methods

e Interpolation Approach: find a function from an n-dimensional family of
functions which exactly fits n data items

e Lagrange polynomial interpolation
— Data: (x;,y;),i=1,..,n.

— Objective: Find a polynomial of degree n— 1, p,(x), which agrees with
the data, i.e.,

Y = f(xz)a 1= 17"7”

— Result: If the z; are distinct, there is a unique interpolating polynomial
e Hermite polynomial interpolation

— Data: (z;,v:,v)),i=1,..,n.

— Objective: Find a polynomial of degree 2n — 1, p(x), which agrees with
the data, i.e.,

yZ:p<ZEZ)7 1= 17 ey 1
yi=p'(x;), i=1,..,n
— Result: If the z; are distinct, there is a unique interpolating polynomial

e Least squares approximation

— Data: A function, f(x).

— Objective: Find a function g(x) from a class G that best approximates
f(x), ie.,

g =argmax | f — g|°
gelG

23

e Chebyshev polynomials - Example of orthogonal polynomials

—la, b = [—1,1]
—w(z)=(1- :1:2)_1/2

— Ty (x) = cos(ncos™ z)

— Recurrence formula:
To(l’) =1
T1 (l’) =T

Figure 1:

24

e (General intervals

— Few problems have the specific intervals used in definition of Chebshev
polynomials

— Map compact interval [a, b] to [—1, 1] by

T —a

b—a

then ¢; (—1 + 24=2) are the Chebyshev polynomials adapted to [a, b]

y=—1+2

Regression

e Data: (z;,v;),i=1,..,n.

e Objective: Find 5 € R™, m < n, with y; = f(x;; 6),i = 1,..,n.
e Least Squares regression:

min (yi — f (x; 5))2

BeER™

Chebyshev Regression

e Chebyshev Regression Data:
o (r;,,y;),i=1,...,n>m,x; are the n zeroes of T,,(x) adapted to [a, b]
e Chebyshev Interpolation Data:

(x:,9i),i=1,..,n =m,x; are the n zeroes of T, (x)adapted to |a, b]

25

Minmax Approximation

e Data: (z;,v),i=1,..,n.
e Objective: L™ fit

52}% max lyi — f (x5 8)]

e Problem: Difficult to compute

e Chebyshev minmax property

Theorem 2 Suppose f : [—1,1] — R is C* for some k > 1, and let I,
be the degree n polynomial interpolation of f based at the zeroes of T, (x).
Then

| f =1 [[o< (; log(n + 1) + 1>

— k) vk (b—a\"
L) (5FE) 1

e Chebyshev interpolation:

— converges in L™
— essentially achieves minmax approximation
— easy to compute

— does not approximate f’

26

Splines
Definition 3 A function s(x) on |a,b] is a spline of order n iff
1. s is C"% on [a,b], and

2. there is a grid of points (called nodes) a = xg < x1 < -+ < X, = b such
that s(x) is a polynomial of degree n — 1 on each subinterval [x;, x;1],
1=0,...,m—1.

Note: an order 2 spline is the piecewise linear interpolant.

e Cubic Splines

— Lagrange data set: {(x;, v;) |i =0, ---, n}.
— Nodes: The x; are the nodes of the spline
— Functional form: s(z) = a; + b; x + ¢; * + d; 2° on [z;_1, ;]

— Unknowns: 4n unknown coefficients, a;, b;, ¢;,d;, 1 =1, ---n.

27

e Conditions:
— 2n interpolation and continuity conditions:

y; =a; + b;x; + Cix? - dix?,

1=1,.,n
. b1 2
Yi =41 + 0;11T; + Cip1X; + Aig 175,
1=0,.,n—1

— 2n — 2 conditions from C? at the interior: fori =1,---n — 1,

bz' + QCZ'CL’Z' + del’? = bz’—i—l + 262'4_1 T; + SdH_lCL’?
202' + 6dzl’z = 202'_1_1 + 6d¢+1$¢

— Equations (1-4) are 4n — 2 linear equations in 4n unknown parameters,
a, b, c, and d.

— construct 2 side conditions:

* natural spline: s”(xy) = 0 = s”(z,); it minimizes total curvature,
f;on s"(x)?* dz, among solutions to (1-4).

* Hermite spline: s'(z9) =y, and §'(x,,) =y, (assumes extra data)

* Secant Hermite spline: s'(zg) = (s(x1) — s(zo))/(x1 — xp) and
s'(an) = (s(xn) = s(@n-1))/ (20 — Tn).

* not-a-knot: choose j = i1, 19, such that 41 +1 < 73, and set d; =
dii1.

— Solve system by special (sparse) methods; see spline fit packages

28

e B-Splines: A basis for splines

— Put knots at {x_j, -+ , 21,20, - , T}
— Order 1 splines: step function interpolation spanned by
0, =z <ux,
B?('CE) — 17 L <z < Li+1,
07 Li+1 < L,

— Order 2 splines: piecewise linear interpolation and are spanned by

’

0, r <X Or T 2> Tiqo,
1 o T _ .
Bi (CU) = < Tii1—) CEZ S X S xl—i—l)

The Bl-spline is the tent function with peak at x;,1 and is zero for
r<z;and T > x;9.

— Both B and B! splines form cardinal bases for interpolation at the
x;'s.

— Higher-order B-splines are defined by the recursive relation

B = (1) B

Litk — Tj

+< Sl = 2) Bl ()

Litk+1 — Ti+1

29

e Shape-preservation

— Concave (monotone) data may lead to nonconcave (nonmonotone) ap-

proximations.

— Example

Figure 2:

30

e Schumaker Procedure:

1. Take level (and maybe slope) data at nodes z;
2. Add intermediate nodes z;" € [z, ;1]
3. Create quadratic spline with nodes at the x and z nodes to interpolate

data and preserves shape.

e Many other procedures exist for one-dimensional problems
e Few procedures exist for two-dimensional problems

e Higher dimensions are difficult, but many questions are open.

e Spline summary:

— Ewvaluation is cheap

x oplines are locally low-order polynomial.

« Can choose intervals so that finding which |x;, z;,1] contains a spe-
cific x is easy.

— Good fits even for functions with discontinuous or large higher-order

derivatives.

— Can use splines to preserve shape conditions

31

Multidimensional approximation methods

e Lagrange Interpolation
— Data: D = {(z;, z:)}}Y; € R"™ where z; € R" and z; € R™
— Objective: find f: R" — R™ such that z; = f(x;).

— Task: Find combinations of interpolation nodes and spanning functions
to produce a nonsingular (well-conditioned) interpolation matrix.

Tensor products

o If A and B are sets of functions over x € R", y € R, their tensor product
1S
A® B—{p@)ily) | ¢ € A, € B},

e Given a basis for functions of z;, ® = {pi(x;)}°,, the n-fold tensor
product basis for functions of (x1, xs, ..., z,) is

®_{ng;;i(a;i)yki_o,1,---, i—l,...,n}
=1

Multidimensional Splines

e B-splines: Multidimensional versions of splines can be constructed through
tensor products; here B-splines would be useful.

e Summary

— Tensor products directly extend one-dimensional methods to n dimen-

sions

— Curse of dimensionality often makes tensor products impractical

32

Complete polynomials

e In general, the complete set of polynomials of total degree k in n variables.
- n
Pr=A{ay x| Y i<k, 0<iy, - iy}
(=1

e Sizes of alternative bases

degree k Py Tensor Prod.
2 l+n+n(n+1)/2 3"
3 14+n+ n(n+1) T n2 e n(n—1)(n—2) AN

2 6

— Complete polynomial bases contains fewer elements than tensor prod-
ucts.

— Asymptotically, complete polynomial bases are as good as tensor prod-
ucts.

— For smooth n-dimensional functions, complete polynomials are more

efficient approximations
e Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coeffi-
cients for polynomials in complete basis).

— Complete polynomial version is faster to compute since it involves fewer

terms

33

Parametric Approach: Approximating T' - Expectations
e For each x;, (T'V)(x;) is defined by

= (TV)(x;) = I%&(X)ﬂ'u , T +B/ 7 a)dF(zh |z, u) (12.7.5)
ue

e The definition includes an expectation

BV alla)} = [Vi aldFafas, 0
e How do we approximate the integral?
Integration

e Most integrals cannot be evaluated analytically

e We examine various integration formulas that can be used.

Newton-Cotes Formulas
e Trapezoid Rule: piecewise linear approximation

— nodes: a:j:aJr(j—%)h,j:l,Z, ., nh=(0b—-a)/n

— for some £ € [a, b

)
’ h
[1@ do= 5 (ot 2hit 2 4 1)

h2(b_a) "
- ()

e Simpson’s Rule: piecewise quadratic approximation

b
[£ o= o+ 4+ 264 4+ Afy)
ht(b — a)

_ 2 @)
()

e Obscure rules for degree 3, 4, etc. approximations.

34

Gaussian Formulas

e All integration formulas are of form

b n
[1@rde = wnfia) 79.)

for some quadrature nodes x; € |a,b] and quadrature weights w;.

— Newton-Cotes use arbitrary x;

— Gaussian quadrature uses good choices of x; nodes and w; weights.
e Exact quadrature formulas:

— Let Fj. be the space of degree k polynomials

— A quadrature formula is exact of degree k if it correctly integrates each
function in Fj,

— Gaussian quadrature formulas use n points and are exact of degree
2n — 1

Gauss-Chebyshev Quadrature
e Domain: [—1, 1]

e Weight: (1 — 22)71/2

e Formula:
1 n (2n)
=12, T . T fE(E)
| f@a =ty =T >)t gy (724
for some & € [—1, 1], with quadrature nodes
2t — 1
T; = CoS < Z2n 7r) , i=1,....n. (7.2.5)

35

Arbitrary Domains
e Want to approximate fab f(x)dz

— Different range, no weight function
— Linear change of variables t = =14 2(y — a)(b — a)
— Multiply the integrand by (1 — 22)Y/? /(1 — 2%)1/2.
— C.0.V. formula
b 1 2\1/2
b—a r+1)b—a 1—=x
/f(y)dy= /f(< A)+a)()

2) 2 (1— x2)1/2

— Gauss-Chebyshev quadrature produces

/abf(y) dy = w(bQ; a) Zzn;f <($Z + 1;(19 —a) N a) (1- x?>1/2

where the x; are Gauss-Chebyshev nodes over [—1, 1].

36

Gauss-Hermite Quadrature
e Domain: [—o0, 00|
o Weight: et

e Formula:

o0 2 ‘ /7 f(%)(g)
|t e =3 et) + 15 L

for some & € (—o0, 00).
e Fxample formulas

Table 7.4: Gauss — Hermite Quadrature

N XT; W;
3 0.1224744871(1) 0.2954089751
0.0000000000 0.1181635900(1)

4 0.1650680123(1) 0.8131283544(—1)
0.5246476232 0.8049140900

7 0.2651961356(1) 0.9717812450(—3)
0.1673551628(1) 0.5451558281(—1)
0.8162878828 0.4256072526
0.0000000000 0.8102646175

37

e Normal Random Variables
— Y is distributed N(pu, 0?)

— Expectation is integration:

E{f(Y)} = (27T02)—1/2 /_Oo f(y)e_(yﬂ)z

— Use Gauss-Hermite quadrature

% linear COV z = (y — p)/vV2 o
* COV formula:

/ fly =/ 20%) gy = / f(V20z+ pe” V20 dx

x COV quadrature formula:
E{f(V)} =72 wif(V2oz +p)
i=1

where the w; and x; are the Gauss-Hermite quadrature weights and
nodes over [—o0, 00.

38

Multidimensional Integration

e Many dynamic programming problems have several dimensions

e Multidimensional integrals are much more difficult

— Simple methods suffer from curse of dimensionality

— There are methods which avoid curse of dimensionality

Product Rules

e Build product rules from one-dimension rules

14

o Let f, wf, i = 1,---,m, be one-dimensional quadrature points and

weights in dimension ¢ from a Newton-Cotes rule or the Gauss-Legendre

rule.

e The product rule
= L2 d 12 d
/[1 1)d fle)de = Z o Z Wi Wig ="+ Wiy f(xz'lv Ly * ,xid)

11=1 1q=1
e Curse of dimensionality:

— m? functional evaluations is m? for a d-dimensional problem with m,
points in each direction.

— Problem worse for Newton-Cotes rules which are less accurate in R!.

39

Monomial Formulas: A Nonproduct Approach

e Method

o Choosez' € DCR? i=1,....N

°9

e Choosew; eR, 1=1,....N

e Quadrature formula

[rwrde =Y v) 753

e A monomial formula is complete for degree £ if

Z w;p(z') = /Dp(az) dx (7.5.3)

for all polynomials p(z) of total degree ¢; recall that P, was defined in
chapter 6 to be the set of such polynomials.

e For the case ¢ = 2, this implies the equations

Zf\il Wi = fD 1-dx
i wir; = [prjde, j=1,---.d (7.5.4)
Zi\il wi$§$2: fDQSjCL’kda}, j, k = 1’ ce ’d

— 1+ d+3d(d + 1) equations

— N weights w; and the N nodes 2 each with d components, yielding a
total of (d + 1)N unknowns.

40

e Simple examples

— Let ¢/ =(0,...,1,...,0) where the ‘1’ appears in column j.

— 2d points and exactly integrates all elements of P3 over [—1, 1]¢
/[f=w Z (ue') + f(—ue'))
1,1)

B d 1/2 _2d—1
“T\3) YTy

— For P5 the following scheme works:

f[—l,l]d f=wif(0) +ws Z? 1 (f(uei) + f(—uei))
+ws Y r<ica (flule’ £ /) + f(—u(e’ £e)))

1<j<d

where

w1 =2%25 d* — 115 d 4+ 162), wy = 2%(70 — 25d)

2 gl = (22

REAREDY] 5

41

Parametric Approach: Approximating 1" - Maximization

e For each x;, (T'V)(x;) is defined by

v; = (TV)(z;) = max m(u,x;) +6/V(x+;a)dF(:c+\a:j,u) (12.7.5)

ueD(z;)

e In practice, we compute the approximation T
vj = (TV)(x;) = (TV)(x;)
using some integration method.

E{V(z";a)|zj,u)} = wiV(gle), u,e0); a)
14

e We now come to the maximization step: for x; € X, evaluate

— Use appropriate optimization method, depending on the smoothness of
the maximand

— Hot starts

— Concave stopping rules

e When we have computed the v; (and perhaps v}) we execute the fitting
step:

— Data: (v;,vl,z;), i=1,---,n
— Objective: find an a € R™ such that V(x; a) best fits the data

A

— Methods: determined by V' (x;a)

42

Parametric Approach: Value Function Iteration

guess a — V (z; a)
—>(Uiaxi)7 1= 17 y TV

—11EW

e Comparison with discretization

— This procedure examines only a finite number of points, but does not

assume that future points lie in same finite set.

— Our choices for the x; are guided by systematic numerical considera-

tions.
e Synergies

— Smooth interpolation schemes allow us to use Newton’s method in the

maximization step.

— They also make it easier to evaluate the integral in (12.7.5).
e F'inite-horizon problems

— Value function iteration is only possible procedure since V' (x,t) de-

pends on time t.
— Begin with terminal value function, V' (x,T)

— Compute approximations for each V (x,t), t =T — 1,T — 2, etc.

43

Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration
Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form for V(z; a), and choose
the approximation grid, X = {z1, ..., z,}.
Make initial guess V(:U, a"), and choose stopping
criterion € > 0.
Step 1: Maximization step: Compute
v; = (TV (- a"))(z;) for all z; € X.
Step 2: Fitting step: Using the appropriate approximation
method, compute the a’*' € R™ such that
V(z; a1 approximates the (v;, z;) data.
Step 3: If || V(z:a') — V(z;a'*Y) ||< e, STOP; else go to step 1.

44

e Convergence

— 1" is a contraction mapping

—T may be neither monotonic nor a contraction
e Shape problems

— An instructive example

Figure 3:

— Shape problems may become worse with value function iteration

— Shape-preserving approximation will avoid these instabilities

45

Comparisons
We apply various methods to the deterministic growth model

Relative L2 Errors over [0.7,1.3]
N (8,7) :
(95-10.) (.95-2.) (.95-5) (.99-10.) (.99,-2.) (.99-.5)
Discrete model
12 7.6e-02 2.8e-03 5.3e-03 7.9e-01 1.8e-01 1.1e-02
1200 1.0e-04 2.1e-05 5.4e-05 2.9e-03 5.4e-03 1.3e-04
Linear Interpolation
4 7.9e-03 4.1e-03 24e-03 8.0e-03 4.1e-03 2.4e-03
12 1.5e-03 9.8e-04 5.6e-04 1.5e-03 1.0e-03 6.3e-04
120 1.1e-04 3.7e-05 1.3e-05 1.4e-04 8.4e-05 4.2¢-05
Cubic Spline
4 6.6e-03 5.0e-04 1.3e-04 7.1e-03 5.7e-04 1.8e-04
12 8.7e-05 1.5e-06 1.8e-07 1.3e-04 4.9e-06 1.1e-06
40 7.2e-08 1.8e-08 5.5e-09 7.6e-07 8.8e-09 4.9e-09
120 5.3e-09 5.6e-10 1.3e-10 4.2e-07 4.1e-09 1.5e-09
Polynomial (without slopes)
4 DNC 54e-04 1.6e-04 14e-02 5.6e-04 1.7e-04
12 3.0e-07 2.0e-09 4.3e-10 5.8e-07 4.5e-09 1.5e-09
Shape Preserving Quadratic Hermite Interpolation

4 4.7e-04 1.5e-04 6.0e-05 5.0e-04 1.7¢-04 7.3e-05
12 3.8e-05 1.1e-05 3.7¢-06 5.9e-05 1.7¢-05 6.3e-06
120 2.2e-07 1.7¢-08 3.1e-09 4.0e-06 4.6e-07 5.9e-08

Shape Preserving Quadratic Interpolation (ignoring slopes)
4 11e-02 3.8¢-03 1.2e-03 2202 7.3e-03 2.2e-03
12 6.7¢-04 1.1e-04 3.1e-05 1.2e-03 2.1e-04 5.7e-05
120 2.5e-06 1.5e-07 2.2e-08 4.3e-06 8.5e-07 1.9e-07

46

General Parametric Approach: Policy Iteration

e Basic Bellman equation:

V(z) = max m(u,z)+ B8 E{V(z)|x,u)} = (TV)(z).

ueD(x)
e Policy iteration:
— Current guess: a finite-dimensional linear parameterization

V(z)=V(z;a), a € R™

— Iteration: compute optimal policy today if V(az, a) is value tomorrow

U(z) = mo(z:, U (), 1) + 5% (E {f/ (¢ a) |2, U (:c))})

using some approximation scheme U (x;)

— Compute the value function if the policy U (x;b) is used forever, which
is solution to the linear integral equation

A

V(z;a) = n(U(x;b),2) + B E{V(z";a)|z, U(z; b))}

that can be solved by a projection method

47

Summary:
e Discretization methods

— Easy to implement
— Numerically stable
— Amenable to many accelerations

— Poor approximation to continuous problems
e Continuous approximation methods

— Can exploit smoothness in problems
— Possible numerical instabilities

— Acceleration is less possible

48

