Numerical Dynamic Programming

Kenneth L. Judd Hoover Institution

Prepared for ICE05 July 20, 2005 - lectures

Discrete-Time Dynamic Programming

• Objective:

$$E\left\{\sum_{t=1}^{T} \pi(x_t, u_t, t) + W(x_{T+1})\right\},\tag{12.1.1}$$

- -X: set of states
- $-\mathcal{D}$: the set of controls
- $-\pi(x, u, t)$ payoffs in period t, for $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
- $-D(x,t) \subseteq \mathcal{D}$: controls which are feasible in state x at time t.
- -F(A; x, u, t): probability that $x_{t+1} \in A \subset X$ conditional on time t control and state
- Value function

$$V(x,t) \equiv \sup_{\mathcal{U}(x,t)} E\left\{ \sum_{s=t}^{T} \pi(x_s, u_s, s) + W(x_{T+1}) | x_t = x \right\}.$$
 (12.1.2)

• Bellman equation

$$V(x,t) = \sup_{u \in D(x,t)} \pi(x, u, t) + E\{V(x_{t+1}, t+1) | x_t = x, u_t = u\}$$
(12.1.3)

• Existence: boundedness of π is sufficient

Autonomous, Infinite-Horizon Problem:

• Objective:

$$\max_{u_t} E\left\{\sum_{t=1}^{\infty} \beta^t \pi(x_t, u_t)\right\}$$
 (12.1.1)

- -X: set of states
- $-\mathcal{D}$: the set of controls
- $-D(x) \subseteq \mathcal{D}$: controls which are feasible in state x.
- $-\pi(x, u)$ payoff in period t if $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
- -F(A;x,u): probability that $x^+ \in A \subset X$ conditional on current control u and current state x.
- Value function definition: if $\mathcal{U}(x)$ is set of all feasible strategies starting at x.

$$V(x) \equiv \sup_{\mathcal{U}(x)} E\left\{ \sum_{t=0}^{\infty} \beta^t \pi(x_t, u_t) \middle| x_0 = x \right\}, \tag{12.1.8}$$

• Bellman equation for V(x)

$$V(x) = \sup_{u \in D(x)} \pi(x, u) + \beta E \left\{ V(x^+) | x, u \right\} \equiv (TV)(x), \quad (12.1.9)$$

• Optimal policy function, U(x), if it exists, is defined by

$$U(x) \in \arg \max_{u \in D(x)} \pi(x, u) + \beta E\left\{V(x^+)|x, u\right\}$$

• Standard existence theorem:

Theorem 1 If X is compact, $\beta < 1$, and π is bounded above and below, then the map

$$TV = \sup_{u \in D(x)} \pi(x, u) + \beta E\{V(x^{+}) \mid x, u\}$$
 (12.1.10)

is monotone in V, is a contraction mapping with modulus β in the space of bounded functions, and has a unique fixed point.

Deterministic Growth Example

• Problem:

$$V(k_0) = \max_{c_t} \sum_{t=0}^{\infty} \beta^t u(c_t),$$

$$k_{t+1} = F(k_t) - c_t$$

$$k_0 \text{ given}$$
(12.1.12)

- Euler equation:

$$u'(c_t) = \beta u'(c_{t+1})F'(k_{t+1})$$

- Bellman equation

$$V(k) = \max_{c} \ u(c) + \beta V(F(k) - c). \tag{12.1.13}$$

– Solution to (12.1.12) is a policy function C(k) and a value function V(k) satisfying

$$0 = u'(C(k))F'(k) - V'(k)$$
(12.1.15)

$$V(k) = u(C(k)) + \beta V(F(k) - C(k))$$
 (12.1.16)

- (12.1.16) defines the value of an arbitrary policy function C(k), not just for the optimal C(k).
- The pair (12.1.15) and (12.1.16)
 - expresses the value function given a policy, and
 - a first-order condition for optimality.

Stochastic Growth Accumulation

• Problem:

$$V(k, \theta) = \max_{c_t, \ell_t} E\left\{\sum_{t=0}^{\infty} \beta^t \ u(c_t)\right\}$$
$$k_{t+1} = F(k_t, \theta_t) - c_t$$
$$\theta_{t+1} = g(\theta_t, \varepsilon_t)$$
$$\varepsilon_t : \text{ i.i.d. random variable}$$
$$k_0 = k, \ \theta_0 = \theta.$$

- State variables:
 - -k: productive capital stock, endogenous
 - $-\theta$: productivity state, exogenous
- The dynamic programming formulation is

$$V(k,\theta) = \max_{c} u(c) + \beta E\{V(F(k,\theta) - c, \theta^{+}) | \theta\}$$
 (12.1.21)
$$\theta^{+} = g(\theta, \varepsilon)$$

• The control law $c = C(k, \theta)$ satisfies the first-order conditions

$$0 = u_c(C(k, \theta)) - \beta E\{u_c(C(k^+, \theta^+))F_k(k^+, \theta^+) \mid \theta\}, \qquad (12.1.23)$$

where

$$k^+ \equiv F(k, L(k, \theta), \theta) - C(k, \theta),$$

Objectives of this Lecture

- Formulate dynamic programming problems in computationally useful ways
- Describe key algorithms
 - Value function iteration
 - Policy iteration
 - Gauss-Seidel methods
 - Linear programming approach
- Describe approaches to continuous-state problems
 - Point to key numerical steps
 - * Approximation of value functions
 - * Numerical integration methods
 - * Maximization methods
 - Describe how to combine alternative numerical techniques and algorithms

Discrete State Space Problems

- State space $X = \{x_i, i = 1, \dots, n\}$
- Controls $\mathcal{D} = \{u_i | i = 1, ..., m\}$
- $q_{ij}^t(u) = \Pr(x_{t+1} = x_j | x_t = x_i, u_t = u)$
- $Q^t(u) = (q_{ij}^t(u))_{i,j}$: Markov transition matrix at t if $u_t = u$.

Value Function iteration

• Terminal value:

$$V_i^{T+1} = W(x_i), \ i = 1, \cdots, n.$$

• Bellman equation: time t value function is

$$V_i^t = \max_{u} \left[\pi(x_i, u, t) + \beta \sum_{j=1}^n q_{ij}^t(u) V_j^{t+1} \right], \ i = 1, \dots, n$$

which defines value function iteration

- Value function iteration is only choice for finite-horizon problems
- Infinite-horizon problems
 - Bellman equation is a set of equations for V_i values:

$$V_i = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j \right], i = 1, \dots, n$$

- Value function iteration is now

$$V_i^{k+1} = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j^k \right], i = 1, \dots, n$$

- Can use value function iteration with arbitrary V_i^0 and iterate $k \to \infty$.
- Error is given by contraction mapping property:

$$||V^k - V^*|| \le \frac{1}{1-\beta} ||V^{k+1} - V^k||$$

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).

Step 0: Make initial guess V^0 ; choose stopping criterion $\epsilon > 0$.

Step 1: For i = 1, ..., n, compute $V_i^{\ell+1} = \max_{u \in D} \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^{\ell}$.

Step 2: If $||V^{\ell+1} - V^{\ell}|| < \epsilon$, then go to step 3; else go to step 1.

Step 3: Compute the final solution, setting $U^* = \mathcal{U}V^{\ell+1},$ $\mathcal{D}^* = \mathcal{T}(m, U^*)$

 $P_i^* = \pi(x_i, U_i^*), \quad i = 1, \dots, n,$ $V^* = (I - \beta Q^{U^*})^{-1} P^*,$

and STOP.

Output:

Policy Iteration (a.k.a. Howard improvement)

- Value function iteration is a slow process
 - Linear convergence at rate β
 - Convergence is particularly slow if β is close to 1.
- Policy iteration is faster
 - Current guess:

$$V_i^k, i = 1, \cdots, n.$$

- Iteration: compute optimal policy today if V^k is value tomorrow:

$$U_i^{k+1} = \arg\max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j^k \right], i = 1, \dots, n,$$

- Compute the value function if the policy U^{k+1} is used forever, which is solution to the linear system

$$V_i^{k+1} = \pi (x_i, U_i^{k+1}) + \beta \sum_{j=1}^n q_{ij}(U_i^{k+1}) V_j^{k+1}, i = 1, \dots, n,$$

- Comments:
 - Policy iteration depends on only monotonicity
 - Policy iteration is faster than value function iteration
 - * If initial guess is above or below solution then policy iteration is between truth and value function iterate
 - * Works well even for β close to 1.

Gaussian acceleration methods for infinite-horizon models

• Key observation: Bellman equation is a simultaneous set of equations

$$V_i = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j \right], i = 1, \dots, n$$

- Idea: Treat problem as a large system of nonlinear equations
- Value function iteration is the *pre-Gauss-Jacobi* iteration

$$V_i^{k+1} = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j^k \right], i = 1, \dots, n$$

• True Gauss-Jacobi is

$$V_i^{k+1} = \max_{u} \left[\frac{\pi(x_i, u) + \beta \sum_{j \neq i} q_{ij}(u) V_j^k}{1 - \beta q_{ii}(u)} \right], i = 1, \dots, n$$

- pre-Gauss-Seidel iteration
 - Value function iteration is a pre-Gauss-Jacobi scheme.
 - Gauss-Seidel alternatives use new information immediately
 - * Suppose we have V_i^{ℓ}
 - * At each x_i , given $V_j^{\ell+1}$ for j < i, compute $V_i^{\ell+1}$ in a pre-Gauss-Seidel fashion

$$V_i^{\ell+1} = \max_{u} \pi(x_i, u) + \beta \sum_{j < i} q_{ij}(u) V_j^{\ell+1} + \beta \sum_{j \ge i} q_{ij}(u) V_j^{\ell}$$
 (12.4.7)

* Iterate (12.4.7) for i = 1, ..., n

- Gauss-Seidel iteration
 - Suppose we have V_i^{ℓ}
 - If optimal control at state i is u, then Gauss-Seidel iterate would be

$$V_i^{\ell+1} = \pi(x_i, u) + \beta \frac{\sum_{j < i} q_{ij}(u) V_j^{\ell+1} + \sum_{j > i} q_{ij}(u) V_j^{\ell}}{1 - \beta q_{ii}(u)}$$

— Gauss-Seidel: At each x_i , given $V_j^{\ell+1}$ for j < i, compute $V_i^{\ell+1}$

$$V_i^{\ell+1} = \max_{u} \frac{\pi(x_i, u) + \beta \sum_{j < i} q_{ij}(u) V_j^{\ell+1} + \beta \sum_{j > i} q_{ij}(u) V_j^{\ell}}{1 - \beta q_{ii}(u)}$$

- Iterate this for i = 1, ..., n
- Gauss-Seidel iteration: better notation
 - No reason to keep track of ℓ , number of iterations
 - At each x_i ,

$$V_i \longleftarrow \max_{u} \frac{\pi(x_i, u) + \beta \sum_{j < i} q_{ij}(u) V_j + \beta \sum_{j > i} q_{ij}(u) V_j}{1 - \beta q_{ij}(u)}$$

- Iterate this for i = 1, ..., n, 1,, etc.

Upwind Gauss-Seidel

- Gauss-Seidel methods in (12.4.7) and (12.4.8)
 - Sensitive to ordering of the states.
 - Need to find good ordering schemes to enhance convergence.

• Example:

- Two states, x_1 and x_2 , and two controls, u_1 and u_2
 - * u_i causes state to move to x_i , i = 1, 2
 - * Payoffs:

$$\pi(x_1, u_1) = -1, \ \pi(x_1, u_2) = 0,$$

 $\pi(x_2, u_1) = 0, \ \pi(x_2, u_2) = 1.$ (12.4.9)

- * $\beta = 0.9$.
- Solution:
 - * Optimal policy: always choose u_2 , moving to x_2
 - * Value function:

$$V(x_1) = 9, \ V(x_2) = 10.$$

- * x_2 is the unique steady state, and is stable
- Value iteration with $V^0(x_1) = V^0(x_2) = 0$ converges linearly:

$$V^{1}(x_{1}) = 0$$
, $V^{1}(x_{2}) = 1$, $U^{1}(x_{1}) = 2$, $U^{1}(x_{2}) = 2$,
 $V^{2}(x_{1}) = 0.9$, $V^{2}(x_{2}) = 1.9$, $U^{2}(x_{1}) = 2$, $U^{2}(x_{2}) = 2$,
 $V^{3}(x_{1}) = 1.71$, $V^{3}(x_{2}) = 2.71$, $U^{3}(x_{1}) = 2$, $U^{3}(x_{2}) = 2$,

- Policy iteration converges after two iterations

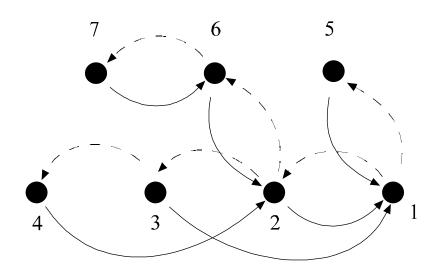
$$V^{1}(x_{1}) = 0$$
, $V^{1}(x_{2}) = 1$, $U^{1}(x_{1}) = 2$, $U^{1}(x_{2}) = 2$, $V^{2}(x_{1}) = 9$, $V^{2}(x_{2}) = 10$, $U^{2}(x_{1}) = 2$, $U^{2}(x_{2}) = 2$,

• Upwind Gauss-Seidel

- Value function at absorbing states is trivial to compute
 - * Suppose s is absorbing state with control u
 - * $V(s) = \pi(s, u)/(1 \beta)$.
- With absorbing state V(s) we compute V(s') of any s' that sends system to s.

$$V(s') = \pi(s', u) + \beta V(s)$$

– With V(s'), we can compute values of states s'' that send system to s'; etc.



• Alternating Sweep

- It may be difficult to find proper order.
- Idea: alternate between two approaches with different directions.

$$W = V^{k},$$

$$W_{i} = \max_{u} \pi(x_{i}, u) + \beta \sum_{j=1}^{n} q_{ij}(u)W_{j}, i = 1, 2, 3, ..., n$$

$$W_{i} = \max_{u} \pi(x_{i}, u) + \beta \sum_{j=1}^{n} q_{ij}(u)W_{j}, i = n, n - 1, ..., 1$$

$$V^{k+1} = W$$

- Will always work well in one-dimensional problems since state moves either right or left, and alternating sweep will exploit this half of the time.
- In two dimensions, there may still be a natural ordering to be exploited.

• Simulated Upwind Gauss-Seidel

- It may be difficult to find proper order in higher dimensions
- Idea: simulate using latest policy function to find downwind direction
 - * Simulate to get an example path, $x_1, x_2, x_3, x_4, ..., x_m$
 - * Execute Gauss-Seidel with states $x_m, x_{m-1}, x_{m-2}, ..., x_1$

Linear Programming Approach

- ullet If ${\mathcal D}$ is finite, we can reformulate dynamic programming as a linear programming problem.
- (12.3.4) is equivalent to the linear program

$$\min_{V_i} \sum_{i=1}^n V_i \\
s.t. \quad V_i \ge \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j, \ \forall i, u \in \mathcal{D}, \tag{12.4.10}$$

- Computational considerations
 - -(12.4.10) may be a large problem
 - Trick and Zin (1997) pursued an acceleration approach with success.
 - OR literature did not favor this approach, but recent work by Daniela
 Pucci de Farias and Ben van Roy has revived interest.

Continuous states: discretization

- Method:
 - "Replace" continuous X with a finite

$$X^* = \{x_i, i = 1, \cdots, n\} \subset X$$

- Proceed with a finite-state method.

• Problems:

- Sometimes need to alter space of controls to assure landing on an x in X.
- A fine discretization often necessary to get accurate approximations

Continuous States: Linear-Quadratic Dynamic Programming

• Problem:

$$\max_{u_t} \sum_{t=0}^{T} \beta^t \left(\frac{1}{2} x_t^{\top} Q_t x_t + u_t^{\top} R_t x_t + \frac{1}{2} u_t^{\top} S_t u_t \right) + \frac{1}{2} x_{T+1}^{\top} W_{T+1} x_{T+1}$$
(12.6.1)

$$x_{t+1} = A_t x_t + B_t u_t,$$

• Bellman equation:

$$V(x,t) = \max_{u_t} \frac{1}{2} x^{\top} Q_t x + u_t^{\top} R_t x + \frac{1}{2} u_t^{\top} S_t u_t + \beta V(A_t x + B_t u_t, t+1).$$
(12.6.2)

Finite horizon

- Key fact: We know solution is quadratic, solve for the unknown coefficients
- The guess $V(x,t) = \frac{1}{2}x^{\top}W_{t+1}x$ implies f.o.c.

$$0 = S_t u_t + R_t x + \beta B_t^{\top} W_{t+1} (A_t x + B_t u_t),$$

- F.o.c. implies the time t control law

$$u_t = -(S_t + \beta B_t^{\top} W_{t+1} B_t)^{-1} (R_t + \beta B_t^{\top} W_{t+1} A_t) x \quad (12.6.3)$$

$$\equiv U_t x.$$

- Substitution into Bellman implies Riccati equation for W_t :

$$W_{t} = Q_{t} + \beta A_{t}^{\top} W_{t+1} A_{t} + (\beta B_{t}^{\top} W_{t+1} A_{t} + R_{t}^{\top}) U_{t}.$$
 (12.6.4)

- Value function method iterates (12.6.4) beginning with known W_{T+1} matrix of coefficients.

Autonomous, Infinite-horizon case.

- Assume $R_t = R$, $Q_t = Q$, $S_t = S$, $A_t = A$, and $B_t = B$
- The guess $V(x) \equiv \frac{1}{2}x^{\top}Wx$ implies the algebraic Riccati equation

$$W = Q + \beta A^{\mathsf{T}} W A - (\beta B^{\mathsf{T}} W A + R^{\mathsf{T}})$$

$$\times (S + \beta B^{\mathsf{T}} W B)^{-1} (\beta B^{\mathsf{T}} W B + R^{\mathsf{T}}).$$

$$(12.6.5)$$

- Two convergent procedures:
 - Value function iteration:

$$W_0$$
: a negative definite initial guess
 $W_{k+1} = Q + \beta A^{\top} W_k A - (\beta B^{\top} W_k A + R^{\top})$
 $\times (S + \beta B^{\top} W_k B)^{-1} (\beta B^{\top} W_k B + R^{\top}).$ (12.6.6)

- Policy function iteration:

$$W_0$$
: initial guess

$$U_{i+1} = -(S + \beta B^{\top} W_i B)^{-1} (R + \beta B^{\top} W_i A) : \text{ optimal policy for } W_i$$

$$W_{i+1} = \frac{\frac{1}{2}Q + \frac{1}{2}U_{i+1}^{\top} SU_{i+1} + U_{i+1}^{\top} R}{1 - \beta} : \text{ value of } U_i$$

Lessons

- We used a functional form to solve the dynamic programming problem
- We solve for unknown coefficients
- We did not restrict either the state or control set
- Can we do this in general?

Continuous Methods for Continuous-State Problems

• Basic Bellman equation:

$$V(x) = \max_{u \in D(x)} \pi(u, x) + \beta E\{V(x^+)|x, u\} \equiv (TV)(x).$$
 (12.7.1)

- Discretization essentially approximates V with a step function
- Approximation theory provides better methods to approximate continuous functions.
- General Task
 - Find good approximation for V
 - Identify parameters

Parametric Approach: Approximating V(x)

• Choose a finite-dimensional parameterization

$$V(x) \doteq \hat{V}(x;a), \ a \in \mathbb{R}^m$$
 (12.7.2)

and a finite number of states

$$X = \{x_1, x_2, \cdots, x_n\},\tag{12.7.3}$$

- polynomials with coefficients a and collocation points X
- splines with coefficients a with uniform nodes X
- rational function with parameters a and nodes X
- neural network
- specially designed functional forms
- Objective: find coefficients $a \in \mathbb{R}^m$ such that $\hat{V}(x;a)$ "approximately" satisfies the Bellman equation.
- Data for approximating V(x)
 - Conventional methods just generate data on $V(x_i)$:

$$v_j = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u)$$
 (12.7.5)

- Envelope theorem:
 - * If solution u is interior,

$$v'_{j} = \pi_{x}(u, x_{j}) + \beta \int \hat{V}(x^{+}; a) dF_{x}(x^{+}|x_{j}, u)$$

* If solution u is on boundary

$$v'_{j} = \mu + \pi_{x}(u, x_{j}) + \beta \int \hat{V}(x^{+}; a) dF_{x}(x^{+}|x_{j}, u)$$

where μ is a Kuhn-Tucker multiplier

- Since computing v'_j is cheap, we should include it in data
- We review approximation methods.

Approximation Methods

• General Objective: Given data about a function f(x) (which is difficult to compute) construct a simpler function g(x) that approximates f(x).

• Questions:

- What data should be produced and used?
- What family of "simpler" functions should be used?
- What notion of approximation do we use?
- How good can the approximation be?
- How simple can a good approximation be?
- Comparisons with statistical regression
 - Both approximate an unknown function
 - Both use a finite amount of data
 - Statistical data is noisy; we assume here that data errors are small
 - Nature produces data for statistical analysis; we produce the data in function approximation
 - Our approximation methods are like experimental design with very small experimental error

Types of Approximation Methods

- Interpolation Approach: find a function from an n-dimensional family of functions which exactly fits n data items
- Lagrange polynomial interpolation
 - Data: $(x_i, y_i), i = 1, ..., n$.
 - Objective: Find a polynomial of degree n-1, $p_n(x)$, which agrees with the data, i.e.,

$$y_i = f(x_i), i = 1, ..., n$$

- Result: If the x_i are distinct, there is a unique interpolating polynomial
- Hermite polynomial interpolation
 - Data: $(x_i, y_i, y'_i), i = 1, ..., n$.
 - Objective: Find a polynomial of degree 2n-1, p(x), which agrees with the data, i.e.,

$$y_i = p(x_i), i = 1, ..., n$$

 $y'_i = p'(x_i), i = 1, ..., n$

- Result: If the x_i are distinct, there is a unique interpolating polynomial
- Least squares approximation
 - Data: A function, f(x).
 - Objective: Find a function g(x) from a class G that best approximates f(x), i.e.,

$$g = \arg\max_{g \in G} \|f - g\|^2$$

 \bullet Chebyshev polynomials - Example of orthogonal polynomials

$$- [a, b] = [-1, 1]$$

$$- w(x) = (1 - x^{2})^{-1/2}$$

$$- T_{n}(x) = \cos(n \cos^{-1} x)$$

- Recurrence formula:

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x),$

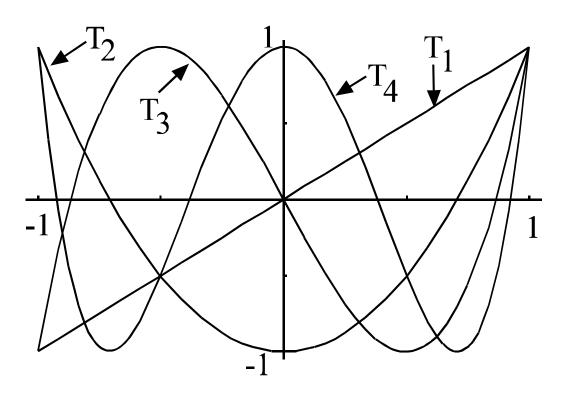


Figure 1:

- General intervals
 - Few problems have the specific intervals used in definition of Chebshev polynomials
 - Map compact interval [a, b] to [-1, 1] by

$$y = -1 + 2\frac{x - a}{b - a}$$

then $\phi_i\left(-1+2\frac{x-a}{b-a}\right)$ are the Chebyshev polynomials adapted to [a,b]

Regression

- Data: $(x_i, y_i), i = 1, ..., n$.
- Objective: Find $\beta \in \mathbb{R}^m$, $m \leq n$, with $y_i \doteq f(x_i; \beta), i = 1, ..., n$.
- Least Squares regression:

$$\min_{\beta \in R^m} \sum (y_i - f(x_i; \beta))^2$$

Chebyshev Regression

- Chebyshev Regression Data:
- $(x_i, y_i), i = 1, ..., n > m, x_i$ are the n zeroes of $T_n(x)$ adapted to [a, b]
- Chebyshev Interpolation Data:

 $(x_i, y_i), i = 1, ..., n = m, x_i$ are the n zeroes of $T_n(x)$ adapted to [a, b]

Minmax Approximation

• Data: $(x_i, y_i), i = 1, ..., n$.

• Objective: L^{∞} fit

$$\min_{\beta \in R^m} \max_{i} \|y_i - f(x_i; \beta)\|$$

• Problem: Difficult to compute

• Chebyshev minmax property

Theorem 2 Suppose $f: [-1,1] \to R$ is C^k for some $k \ge 1$, and let I_n be the degree n polynomial interpolation of f based at the zeroes of $T_n(x)$. Then

$$\parallel f - I_n \parallel_{\infty} \le \left(\frac{2}{\pi} \log(n+1) + 1\right)$$

$$\times \frac{(n-k)!}{n!} \left(\frac{\pi}{2}\right)^k \left(\frac{b-a}{2}\right)^k \parallel f^{(k)} \parallel_{\infty}$$

- Chebyshev interpolation:
 - converges in L^{∞}
 - essentially achieves minmax approximation
 - easy to compute
 - does not approximate f'

Splines

Definition 3 A function s(x) on [a,b] is a spline of order n iff

- 1. $s is C^{n-2} on [a, b], and$
- 2. there is a grid of points (called nodes) $a = x_0 < x_1 < \cdots < x_m = b$ such that s(x) is a polynomial of degree n-1 on each subinterval $[x_i, x_{i+1}]$, $i = 0, \ldots, m-1$.

Note: an order 2 spline is the piecewise linear interpolant.

• Cubic Splines

- Lagrange data set: $\{(x_i, y_i) \mid i = 0, \dots, n\}$.
- Nodes: The x_i are the nodes of the spline
- Functional form: $s(x) = a_i + b_i x + c_i x^2 + d_i x^3$ on $[x_{i-1}, x_i]$
- Unknowns: 4n unknown coefficients, $a_i, b_i, c_i, d_i, i = 1, \dots, n$.

- Conditions:
 - -2n interpolation and continuity conditions:

$$y_{i} = a_{i} + b_{i}x_{i} + c_{i}x_{i}^{2} + d_{i}x_{i}^{3},$$

$$i = 1, ., n$$

$$y_{i} = a_{i+1} + b_{i+1}x_{i} + c_{i+1}x_{i}^{2} + d_{i+1}x_{i}^{3},$$

$$i = 0, ., n - 1$$

-2n-2 conditions from C^2 at the interior: for $i=1,\cdots n-1,$

$$b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2$$
$$2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i$$

- Equations (1-4) are 4n-2 linear equations in 4n unknown parameters, a, b, c, and d.
- construct 2 side conditions:
 - * natural spline: $s''(x_0) = 0 = s''(x_n)$; it minimizes total curvature, $\int_{x_0}^{x_n} s''(x)^2 dx$, among solutions to (1-4).
 - * Hermite spline: $s'(x_0) = y'_0$ and $s'(x_n) = y'_n$ (assumes extra data)
 - * Secant Hermite spline: $s'(x_0) = (s(x_1) s(x_0))/(x_1 x_0)$ and $s'(x_n) = (s(x_n) s(x_{n-1}))/(x_n x_{n-1})$.
 - * not-a-knot: choose $j = i_1, i_2$, such that $i_1 + 1 < i_2$, and set $d_j = d_{j+1}$.
- Solve system by special (sparse) methods; see spline fit packages

- B-Splines: A basis for splines
 - Put knots at $\{x_{-k}, \dots, x_{-1}, x_0, \dots, x_n\}$.
 - Order 1 splines: step function interpolation spanned by

$$B_i^0(x) = \begin{cases} 0, & x < x_i, \\ 1, & x_i \le x < x_{i+1}, \\ 0, & x_{i+1} \le x, \end{cases}$$

- Order 2 splines: piecewise linear interpolation and are spanned by

$$B_i^1(x) = \begin{cases} 0, & x \le x_i \text{ or } x \ge x_{i+2}, \\ \frac{x - x_i}{x_{i+1} - x_i}, & x_i \le x \le x_{i+1}, \\ \frac{x_{i+2} - x}{x_{i+2} - x_{i+1}}, & x_{i+1} \le x \le x_{i+2}. \end{cases}$$

The B_i^1 -spline is the tent function with peak at x_{i+1} and is zero for $x \le x_i$ and $x \ge x_{i+2}$.

- Both B^0 and B^1 splines form cardinal bases for interpolation at the x_i 's.
- Higher-order B-splines are defined by the recursive relation

$$B_{i}^{k}(x) = \left(\frac{x - x_{i}}{x_{i+k} - x_{i}}\right) B_{i}^{k-1}(x) + \left(\frac{x_{i+k+1} - x}{x_{i+k+1} - x_{i+1}}\right) B_{i+1}^{k-1}(x)$$

• Shape-preservation

- Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.
- Example

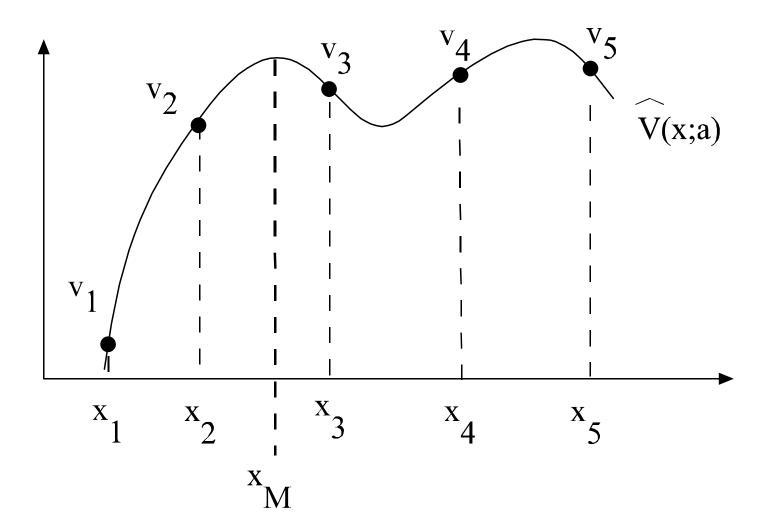


Figure 2:

• Schumaker Procedure:

- 1. Take level (and maybe slope) data at nodes x_i
- 2. Add intermediate nodes $z_i^+ \in [x_i, x_{i+1}]$
- 3. Create quadratic spline with nodes at the x and z nodes to interpolate data and preserves shape.
- Many other procedures exist for one-dimensional problems
- Few procedures exist for two-dimensional problems
- Higher dimensions are difficult, but many questions are open.

• Spline summary:

- Evaluation is cheap
 - * Splines are locally low-order polynomial.
 - * Can choose intervals so that finding which $[x_i, x_{i+1}]$ contains a specific x is easy.
- Good fits even for functions with discontinuous or large higher-order derivatives.
- Can use splines to preserve shape conditions

Multidimensional approximation methods

- Lagrange Interpolation
 - Data: $D \equiv \{(x_i, z_i)\}_{i=1}^N \subset \mathbb{R}^{n+m}$, where $x_i \in \mathbb{R}^n$ and $z_i \in \mathbb{R}^m$
 - Objective: find $f: \mathbb{R}^n \to \mathbb{R}^m$ such that $z_i = f(x_i)$.
 - Task: Find combinations of interpolation nodes and spanning functions to produce a nonsingular (well-conditioned) interpolation matrix.

Tensor products

• If A and B are sets of functions over $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, their tensor product is

$$A \otimes B = \{ \varphi(x)\psi(y) \mid \varphi \in A, \ \psi \in B \}.$$

• Given a basis for functions of x_i , $\Phi^i = \{\varphi_k^i(x_i)\}_{k=0}^{\infty}$, the n-fold tensor product basis for functions of (x_1, x_2, \dots, x_n) is

$$\Phi = \left\{ \prod_{i=1}^{n} \varphi_{k_i}^{i}(x_i) \mid k_i = 0, 1, \dots, i = 1, \dots, n \right\}$$

Multidimensional Splines

- B-splines: Multidimensional versions of splines can be constructed through tensor products; here B-splines would be useful.
- Summary
 - Tensor products directly extend one-dimensional methods to n dimensions
 - Curse of dimensionality often makes tensor products impractical

Complete polynomials

ullet In general, the complete set of polynomials of total degree k in n variables.

$$\mathcal{P}_{k}^{n} \equiv \{x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \mid \sum_{\ell=1}^{n} i_{\ell} \leq k, \ 0 \leq i_{1}, \cdots, i_{n}\}$$

• Sizes of alternative bases

degree
$$k$$
 \mathcal{P}_k^n Tensor Prod.
2 $1 + n + n(n+1)/2$ 3^n
3 $1 + n + \frac{n(n+1)}{2} + n^2 + \frac{n(n-1)(n-2)}{6}$ 4^n

- Complete polynomial bases contains fewer elements than tensor products.
- Asymptotically, complete polynomial bases are as good as tensor products.
- For smooth n-dimensional functions, complete polynomials are more efficient approximations

• Construction

- Compute tensor product approximation, as in Algorithm 6.4
- Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in complete basis).
- Complete polynomial version is faster to compute since it involves fewer terms

Parametric Approach: Approximating T - Expectations

• For each x_j , $(TV)(x_j)$ is defined by

$$v_j = (TV)(x_j) = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u) \quad (12.7.5)$$

• The definition includes an expectation

$$E\{V(x^+;a)|x_j,u)\} = \int \hat{V}(x^+;a)dF(x^+|x_j,u)$$

• How do we approximate the integral?

Integration

- Most integrals cannot be evaluated analytically
- We examine various integration formulas that can be used.

Newton-Cotes Formulas

• Trapezoid Rule: piecewise linear approximation

- nodes:
$$x_j = a + (j - \frac{1}{2})h$$
, $j = 1, 2, ..., n$, $h = (b - a)/n$

- for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f_0 + 2f_1 + \dots + 2f_{n-1} + f_n \right] - \frac{h^2 (b-a)}{12} f''(\xi)$$

• Simpson's Rule: piecewise quadratic approximation

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 4f_{n-1} + f_n \right] - \frac{h^4(b-a)}{180} f^{(4)}(\xi)$$

• Obscure rules for degree 3, 4, etc. approximations.

Gaussian Formulas

• All integration formulas are of form

$$\int_{a}^{b} f(x) dx \doteq \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

$$(7.2.1)$$

for some quadrature nodes $x_i \in [a, b]$ and quadrature weights ω_i .

- Newton-Cotes use arbitrary x_i
- Gaussian quadrature uses good choices of x_i nodes and ω_i weights.
- Exact quadrature formulas:
 - Let \mathcal{F}_k be the space of degree k polynomials
 - A quadrature formula is exact of degree k if it correctly integrates each function in \mathcal{F}_k
 - Gaussian quadrature formulas use n points and are exact of degree 2n-1

Gauss-Chebyshev Quadrature

- Domain: [-1, 1]
- Weight: $(1-x^2)^{-1/2}$
- Formula:

$$\int_{-1}^{1} f(x)(1-x^2)^{-1/2} dx = \frac{\pi}{n} \sum_{i=1}^{n} f(x_i) + \frac{\pi}{2^{2n-1}} \frac{f^{(2n)}(\xi)}{(2n)!}$$
 (7.2.4)

for some $\xi \in [-1, 1]$, with quadrature nodes

$$x_i = \cos\left(\frac{2i-1}{2n}\pi\right), \quad i = 1, ..., n.$$
 (7.2.5)

Arbitrary Domains

- Want to approximate $\int_a^b f(x) dx$
 - Different range, no weight function
 - Linear change of variables x = -1 + 2(y a)(b a)
 - Multiply the integrand by $(1-x^2)^{1/2}/(1-x^2)^{1/2}$.
 - C.O.V. formula

$$\int_{a}^{b} f(y) \ dy = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{(x+1)(b-a)}{2} + a\right) \frac{\left(1-x^{2}\right)^{1/2}}{\left(1-x^{2}\right)^{1/2}} \ dx$$

- Gauss-Chebyshev quadrature produces

$$\int_{a}^{b} f(y) dy \doteq \frac{\pi(b-a)}{2n} \sum_{i=1}^{n} f\left(\frac{(x_{i}+1)(b-a)}{2} + a\right) \left(1 - x_{i}^{2}\right)^{1/2}$$

where the x_i are Gauss-Chebyshev nodes over [-1, 1].

Gauss-Hermite Quadrature

• Domain: $[-\infty, \infty]$

• Weight: e^{-x^2}

• Formula:

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = \sum_{i=1}^{n} \omega_i f(x_i) + \frac{n!\sqrt{\pi}}{2^n} \cdot \frac{f^{(2n)}(\xi)}{(2n)!}$$

for some $\xi \in (-\infty, \infty)$.

• Example formulas

Table 7.4: Gauss – Hermite Quadrature

$$N$$
 x_i ω_i $0.1224744871(1)$ 0.2954089751 0.00000000000 $0.1181635900(1)$ $0.1650680123(1)$ $0.8131283544(-1)$ 0.5246476232 0.8049140900 $0.1673551628(1)$ $0.9717812450(-3)$ $0.1673551628(1)$ $0.5451558281(-1)$ 0.8162878828 0.4256072526 0.00000000000 0.8102646175

- Normal Random Variables
 - -Y is distributed $N(\mu, \sigma^2)$
 - Expectation is integration:

$$E\{f(Y)\} = (2\pi\sigma^2)^{-1/2} \int_{-\infty}^{\infty} f(y)e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

- Use Gauss-Hermite quadrature
 - * linear COV $x = (y \mu)/\sqrt{2} \sigma$
 - * COV formula:

$$\int_{-\infty}^{\infty} f(y)e^{-(y-\mu)^2/(2\sigma^2)} \, dy = \int_{-\infty}^{\infty} f(\sqrt{2}\,\sigma\,x + \mu)e^{-x^2}\sqrt{2}\,\sigma\,dx$$

* COV quadrature formula:

$$E\{f(Y)\} \doteq \pi^{-\frac{1}{2}} \sum_{i=1}^{n} \omega_{i} f(\sqrt{2} \sigma x_{i} + \mu)$$

where the ω_i and x_i are the Gauss-Hermite quadrature weights and nodes over $[-\infty, \infty]$.

Multidimensional Integration

- Many dynamic programming problems have several dimensions
- Multidimensional integrals are much more difficult
 - Simple methods suffer from curse of dimensionality
 - There are methods which avoid curse of dimensionality

Product Rules

- Build product rules from one-dimension rules
- Let x_i^{ℓ} , ω_i^{ℓ} , $i=1,\cdots,m$, be one-dimensional quadrature points and weights in dimension ℓ from a Newton-Cotes rule or the Gauss-Legendre rule.
- The product rule

$$\int_{[-1,1]^d} f(x)dx \doteq \sum_{i_1=1}^m \cdots \sum_{i_d=1}^m \omega_{i_1}^1 \omega_{i_2}^2 \cdots \omega_{i_d}^d f(x_{i_1}^1, x_{i_2}^2, \cdots, x_{i_d}^d)$$

- Curse of dimensionality:
 - $-m^d$ functional evaluations is m^d for a d-dimensional problem with m points in each direction.
 - Problem worse for Newton-Cotes rules which are less accurate in \mathbb{R}^1 .

Monomial Formulas: A Nonproduct Approach

- Method
- Choose $x^i \in D \subset \mathbb{R}^d$, i = 1, ..., N
- Choose $\omega_i \in \mathbb{R}, i = 1, ..., N$
- Quadrature formula

$$\int_{D} f(x) dx \doteq \sum_{i=1}^{N} \omega_{i} f(x^{i})$$
(7.5.3)

• A monomial formula is complete for degree ℓ if

$$\sum_{i=1}^{N} \omega_i \, p(x^i) = \int_D p(x) \, dx \tag{7.5.3}$$

for all polynomials p(x) of total degree ℓ ; recall that \mathcal{P}_{ℓ} was defined in chapter 6 to be the set of such polynomials.

• For the case $\ell = 2$, this implies the equations

$$\sum_{i=1}^{N} \omega_{i} = \int_{D} 1 \cdot dx$$

$$\sum_{i=1}^{N} \omega_{i} x_{j}^{i} = \int_{D} x_{j} dx, \ j = 1, \dots, d$$

$$\sum_{i=1}^{N} \omega_{i} x_{j}^{i} x_{k}^{i} = \int_{D} x_{j} x_{k} dx, \ j, k = 1, \dots, d$$
(7.5.4)

- $-1+d+\frac{1}{2}d(d+1)$ equations
- N weights ω_i and the N nodes x^i each with d components, yielding a total of (d+1)N unknowns.

- Simple examples
 - Let $e^j \equiv (0, \dots, 1, \dots, 0)$ where the '1' appears in column j.
 - -2d points and exactly integrates all elements of \mathcal{P}_3 over $[-1,1]^d$

$$\int_{[-1,1]^d} f = \omega \sum_{i=1}^d \left(f(ue^i) + f(-ue^i) \right)$$
$$u = \left(\frac{d}{3} \right)^{1/2}, \ \omega = \frac{2^{d-1}}{d}$$

– For \mathcal{P}_5 the following scheme works:

$$\int_{[-1,1]^d} f \doteq \omega_1 f(0) + \omega_2 \sum_{i=1}^d \left(f(ue^i) + f(-ue^i) \right) \\
+ \omega_3 \sum_{\substack{1 \leq i < d, \\ i < j \leq d}} \left(f(u(e^i \pm e^j)) + f(-u(e^i \pm e^j)) \right)$$

where

$$\omega_1 = 2^d (25 \ d^2 - 115 \ d + 162), \quad \omega_2 = 2^d (70 - 25d)$$

 $\omega_3 = \frac{25}{324} \ 2^d, \quad u = (\frac{3}{5})^{1/2}.$

Parametric Approach: Approximating T - Maximization

• For each x_j , $(TV)(x_j)$ is defined by

$$v_j = (TV)(x_j) = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u) \quad (12.7.5)$$

ullet In practice, we compute the approximation \hat{T}

$$v_j = (\hat{T}V)(x_j) \doteq (TV)(x_j)$$

using some integration method.

$$E\{V(x^+;a)|x_j,u)\} \doteq \sum_{\ell} \omega_{\ell} \hat{V}(g(x_j,u,\varepsilon_{\ell});a)$$

• We now come to the maximization step: for $x_i \in X$, evaluate

$$v_i = (T\hat{V})(x_i)$$

- Use appropriate optimization method, depending on the smoothness of the maximand
- Hot starts
- Concave stopping rules
- When we have computed the v_i (and perhaps v'_i) we execute the fitting step:
 - Data: $(v_i, v'_i, x_i), i = 1, \dots, n$
 - Objective: find an $a \in \mathbb{R}^m$ such that $\hat{V}(x;a)$ best fits the data
 - Methods: determined by $\hat{V}(x;a)$

Parametric Approach: Value Function Iteration

guess
$$a \longrightarrow \hat{V}(x; a)$$

$$\longrightarrow (v_i, x_i), i = 1, \dots, n$$

$$\longrightarrow \text{new } a$$

• Comparison with discretization

- This procedure examines only a finite number of points, but does *not* assume that future points lie in same finite set.
- Our choices for the x_i are guided by systematic numerical considerations.

• Synergies

- Smooth interpolation schemes allow us to use Newton's method in the maximization step.
- They also make it easier to evaluate the integral in (12.7.5).

• Finite-horizon problems

- Value function iteration is only possible procedure since V(x,t) depends on time t.
- Begin with terminal value function, V(x,T)
- Compute approximations for each V(x,t), t=T-1,T-2, etc.

Algorithm 12.5: Parametric Dynamic Programming with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).

Step 0: Choose functional form for $\hat{V}(x; a)$, and choose the approximation grid, $X = \{x_1, ..., x_n\}$.

Make initial guess $\hat{V}(x; a^0)$, and choose stopping criterion $\epsilon > 0$.

Step 1: Maximization step: Compute $v_j = (T\hat{V}(\cdot; a^i))(x_j)$ for all $x_j \in X$.

Step 2: Fitting step: Using the appropriate approximation method, compute the $a^{i+1} \in R^m$ such that $\hat{V}(x; a^{i+1})$ approximates the (v_i, x_i) data.

Step 3: If $\|\hat{V}(x; a^i) - \hat{V}(x; a^{i+1})\| < \epsilon$, STOP; else go to step 1.

• Convergence

- -T is a contraction mapping
- $-\;\hat{T}$ may be neither monotonic nor a contraction

• Shape problems

- An instructive example

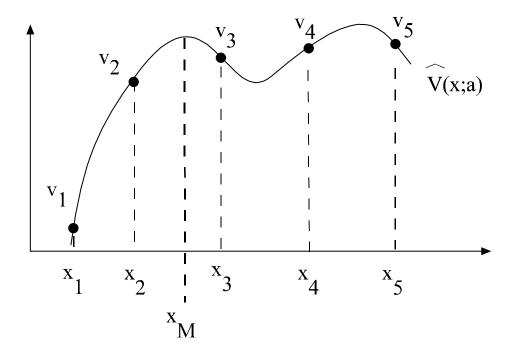


Figure 3:

- Shape problems may become worse with value function iteration
- Shape-preserving approximation will avoid these instabilities

Comparisons

We apply various methods to the deterministic growth model

	Relative L2 Errors over $[0.7,1.3]$ N (β,γ) :					
N						
	(.95, -10.)	(.95, -2.)	(.95,5)	(.99,-10.)	(.99, -2.)	(.99,5)
Discrete model						
12	7.6e-02	2.8e-03	5.3e-03	7.9e-01	1.8e-01	1.1e-02
1200	1.0e-04	2.1e-05	5.4e-05	2.9e-03	5.4e-03	1.3e-04
Linear Interpolation						
4	7.9e-03	4.1e-03	2.4e-03	8.0e-03	4.1e-03	2.4e-03
12	1.5e-03	9.8e-04	5.6e-04	1.5e-03	1.0e-03	6.3e-04
120	1.1e-04	3.7e-05	1.3e-05	1.4e-04	8.4e-05	4.2e-05
Cubic Spline						
4	6.6e-03	5.0e-04	1.3e-04	7.1e-03	5.7e-04	1.8e-04
12	8.7e-05	1.5e-06	1.8e-07	1.3e-04	4.9e-06	1.1e-06
40	7.2e-08	1.8e-08	5.5e-09	7.6e-07	8.8e-09	4.9e-09
120	5.3e-09	5.6e-10	1.3e-10	4.2e-07	4.1e-09	1.5e-09
Polynomial (without slopes)						
4	DNC	5.4e-04	1.6e-04	1.4e-02	5.6e-04	1.7e-04
12	3.0e-07	2.0e-09	4.3e-10	5.8e-07	4.5e-09	1.5e-09
Shape Preserving Quadratic Hermite Interpolation						
4	4.7e-04	1.5e-04	6.0e-05	5.0e-04	1.7e-04	7.3e-05
12	3.8e-05	1.1e-05	3.7e-06	5.9e-05	1.7e-05	6.3e-06
120	2.2e-07	1.7e-08	3.1e-09	4.0e-06	4.6e-07	5.9e-08
Shape Preserving Quadratic Interpolation (ignoring slopes)						
4	1.1e-02	3.8e-03	1.2e-03	2.2e-02	7.3e-03	2.2e-03
12	6.7e-04	1.1e-04	3.1e-05	1.2e-03	2.1e-04	5.7e-05
120	2.5e-06	1.5e-07	2.2e-08	4.3e-06	8.5e-07	1.9e-07

General Parametric Approach: Policy Iteration

• Basic Bellman equation:

$$V(x) = \max_{u \in D(x)} \pi(u, x) + \beta E\{V(x^+)|x, u\} \equiv (TV)(x).$$

- Policy iteration:
 - Current guess: a finite-dimensional linear parameterization

$$V(x) \doteq \hat{V}(x; a), \ a \in \mathbb{R}^m$$

– Iteration: compute optimal policy today if $\hat{V}(x;a)$ is value tomorrow

$$U(x) = \pi_u(x_i, U(x), t) + \beta \frac{d}{du} \left(E\left\{ \hat{V}\left(x^+; a\right) | x, U(x) \right) \right) \right)$$

using some approximation scheme $\hat{U}(x;b)$

- Compute the value function if the policy $\hat{U}(x;b)$ is used forever, which is solution to the linear integral equation

$$\hat{V}(x; a') = \pi(\hat{U}(x; b), x) + \beta E\{\hat{V}(x^+; a') | x, \hat{U}(x; b)\}$$

that can be solved by a projection method

Summary:

- Discretization methods
 - Easy to implement
 - Numerically stable
 - Amenable to many accelerations
 - Poor approximation to continuous problems
- Continuous approximation methods
 - Can exploit smoothness in problems
 - Possible numerical instabilities
 - Acceleration is less possible