
Numerical Dynamic Programming

Kenneth L. Judd

Hoover Institution

Prepared for ICE05

July 20, 2005 - lectures

1

Discrete-Time Dynamic Programming

� Objective:
E

(
TX
t=1

π(xt, ut, t) +W (xT+1)

)
, (12.1.1)

� X: set of states

� D: the set of controls
� π(x, u, t) payoffs in period t, for x ∈ X at the beginning of period t,

and control u ∈ D is applied in period t.
� D(x, t) ⊆ D: controls which are feasible in state x at time t.
� F (A;x, u, t) : probability that xt+1 ∈ A ⊂ X conditional on time t

control and state

� Value function

V (x, t) ≡ sup
U(x,t)

E

(
TX
s=t

π(xs, us, s) +W (xT+1)|xt = x
)
. (12.1.2)

� Bellman equation
V (x, t) = sup

u∈D(x,t)
π(x, u, t) +E {V (xt+1, t + 1)|xt = x, ut = u}

(12.1.3)

� Existence: boundedness of π is sufficient

2

Autonomous, InÞnite-Horizon Problem:

� Objective:
max
ut
E

(∞X
t=1

βtπ(xt, ut)

)
(12.1.1)

� X: set of states

� D: the set of controls
� D(x) ⊆ D: controls which are feasible in state x.
� π(x, u) payoff in period t if x ∈ X at the beginning of period t, and

control u ∈ D is applied in period t.
� F (A;x, u) : probability that x+ ∈ A ⊂ X conditional on current

control u and current state x.

� Value function deÞnition: if U(x) is set of all feasible strategies starting at
x.

V (x) ≡ sup
U(x)

E

(∞X
t=0

βtπ(xt, ut)

¯̄̄̄
¯x0 = x

)
, (12.1.8)

3

� Bellman equation for V (x)
V (x) = sup

u∈D(x)
π(x, u) + β E

©
V (x+)|x, uª ≡ (TV)(x), (12.1.9)

� Optimal policy function, U(x), if it exists, is deÞned by
U(x) ∈ arg max

u∈D(x)
π(x, u) + β E

©
V (x+)|x, uª

� Standard existence theorem:
Theorem 1 If X is compact, β < 1, and π is bounded above and below,

then the map

TV = sup
u∈D(x)

π(x, u) + βE
©
V (x+) | x, uª (12.1.10)

is monotone in V , is a contraction mapping with modulus β in the space

of bounded functions, and has a unique Þxed point.

4

Deterministic Growth Example

� Problem:
V (k0) = maxct

P∞
t=0 β

tu(ct),

kt+1 = F (kt)− ct
k0 given

(12.1.12)

� Euler equation:

u0(ct) = βu0(ct+1)F 0(kt+1)

� Bellman equation

V (k) = max
c
u(c) + βV (F (k)− c). (12.1.13)

� Solution to (12.1.12) is a policy function C(k) and a value function

V (k) satisfying

0=u0(C(k))F 0(k)− V 0(k) (12.1.15)

V (k)=u(C(k)) + βV (F (k)− C(k)) (12.1.16)

� (12.1.16) deÞnes the value of an arbitrary policy function C(k), not just
for the optimal C(k).

� The pair (12.1.15) and (12.1.16)
� expresses the value function given a policy, and

� a Þrst-order condition for optimality.

5

Stochastic Growth Accumulation

� Problem:

V (k, θ) = max
ct,7t

E

(∞X
t=0

βt u(ct)

)
kt+1 = F (kt, θt)− ct
θt+1 = g(θt, εt)

εt : i.i.d. random variable

k0 = k, θ0 = θ.

� State variables:
� k: productive capital stock, endogenous

� θ: productivity state, exogenous

� The dynamic programming formulation is
V (k, θ) = max

c
u(c) + βE{V (F (k, θ)− c, θ+)|θ} (12.1.21)

θ+ = g(θ, ε)

� The control law c = C(k, θ) satisÞes the Þrst-order conditions
0 = uc (C(k, θ))− β E {uc(C(k+, θ+))Fk(k+, θ+) | θ}, (12.1.23)

where

k+≡ F (k, L(k, θ), θ)−C(k, θ),

6

Objectives of this Lecture

� Formulate dynamic programming problems in computationally useful ways
� Describe key algorithms
� Value function iteration

� Policy iteration

� Gauss-Seidel methods

� Linear programming approach

� Describe approaches to continuous-state problems
� Point to key numerical steps

∗ Approximation of value functions
∗ Numerical integration methods
∗ Maximization methods

� Describe how to combine alternative numerical techniques and algo-

rithms

7

Discrete State Space Problems

� State space X = {xi, i = 1, · · · , n}
� Controls D = {ui|i = 1, ...,m}
� qtij(u) = Pr (xt+1 = xj|xt = xi, ut = u)
� Qt(u) = ¡qtij(u)¢i,j : Markov transition matrix at t if ut = u.
Value Function iteration

� Terminal value:
V T+1i =W (xi), i = 1, · · · , n.

� Bellman equation: time t value function is

V ti = maxu
[π(xi, u, t) + β

nX
j=1

qtij(u)V
t+1
j], i = 1, · · · , n

which deÞnes value function iteration

� Value function iteration is only choice for Þnite-horizon problems
� InÞnite-horizon problems
� Bellman equation is a set of equations for Vi values:

Vi = max
u

⎡⎣π(xi, u) + β nX
j=1

qij(u)Vj

⎤⎦ , i = 1, · · · , n
� Value function iteration is now

V k+1i = max
u

⎡⎣π(xi, u) + β nX
j=1

qij(u)V
k
j

⎤⎦ , i = 1, · · · , n
8

� Can use value function iteration with arbitrary V 0i and iterate k→∞.
� Error is given by contraction mapping property:°°V k − V ∗°° ≤ 1

1− β
°°V k+1 − V k°°

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).

Step 0: Make initial guess V 0; choose stopping criterion A > 0.

Step 1: For i = 1, ..., n, compute

V 7+1i = maxu∈D π(xi, u) + β
Pn

j=1 qij(u)V
7
j .

Step 2: If k V 7+1 − V 7 k< A, then go to step 3; else go to step 1.
Step 3: Compute the Þnal solution, setting

U∗ = UV 7+1,
P ∗i = π(xi, U

∗
i), i = 1, · · · , n,

V ∗ = (I − βQU∗)−1P ∗,
and STOP.

Output:

9

Policy Iteration (a.k.a. Howard improvement)

� Value function iteration is a slow process
� Linear convergence at rate β

� Convergence is particularly slow if β is close to 1.

� Policy iteration is faster
� Current guess:

V ki , i = 1, · · · , n.
� Iteration: compute optimal policy today if V k is value tomorrow:

Uk+1i = argmax
u

⎡⎣π(xi, u) + β nX
j=1

qij(u)V
k
j

⎤⎦ , i = 1, · · · , n,
� Compute the value function if the policy Uk+1 is used forever, which is

solution to the linear system

V k+1i = π
¡
xi, U

k+1
i

¢
+ β

nX
j=1

qij(U
k+1
i)V k+1j , i = 1, · · · , n,

� Comments:
� Policy iteration depends on only monotonicity

� Policy iteration is faster than value function iteration

∗ If initial guess is above or below solution then policy iteration is
between truth and value function iterate

∗ Works well even for β close to 1.

10

Gaussian acceleration methods for inÞnite-horizon models

� Key observation: Bellman equation is a simultaneous set of equations

Vi = max
u

⎡⎣π(xi, u) + β nX
j=1

qij(u)Vj

⎤⎦ , i = 1, · · · , n
� Idea: Treat problem as a large system of nonlinear equations
� Value function iteration is the pre-Gauss-Jacobi iteration

V k+1i = max
u

⎡⎣π(xi, u) + β nX
j=1

qij(u)V
k
j

⎤⎦ , i = 1, · · · , n
� True Gauss-Jacobi is

V k+1i = max
u

"
π(xi, u) + β

P
j 6=i qij(u)V

k
j

1− βqii (u)

#
, i = 1, · · · , n

� pre-Gauss-Seidel iteration
� Value function iteration is a pre-Gauss-Jacobi scheme.

� Gauss-Seidel alternatives use new information immediately

∗ Suppose we have V 7i
∗ At each xi, given V 7+1j for j < i, compute V 7+1i in a pre-Gauss-Seidel

fashion

V 7+1i = max
u
π(xi, u)+β

X
j<i

qij(u)V
7+1
j +β

X
j≥i
qij(u)V

7
j (12.4.7)

∗ Iterate (12.4.7) for i = 1, .., n

11

� Gauss-Seidel iteration
� Suppose we have V 7i

� If optimal control at state i is u, then Gauss-Seidel iterate would be

V 7+1i = π(xi, u) + β

P
j<i qij(u)V

7+1
j +

P
j>i qij(u)V

7
j

1− βqii(u)
� Gauss-Seidel: At each xi, given V

7+1
j for j < i, compute V 7+1i

V 7+1i = max
u

π(xi, u) + β
P

j<i qij(u)V
7+1
j + β

P
j>i qij(u)V

7
j

1− βqii(u)
� Iterate this for i = 1, .., n

� Gauss-Seidel iteration: better notation
� No reason to keep track of 7, number of iterations

� At each xi,

Vi ←− max
u

π(xi, u) + β
P

j<i qij(u)Vj + β
P

j>i qij(u)Vj

1− βqij(u)
� Iterate this for i = 1, .., n, 1,, etc.

12

Upwind Gauss-Seidel

� Gauss-Seidel methods in (12.4.7) and (12.4.8)
� Sensitive to ordering of the states.

� Need to Þnd good ordering schemes to enhance convergence.

� Example:
� Two states, x1 and x2, and two controls, u1 and u2

∗ ui causes state to move to xi, i = 1, 2
∗ Payoffs:

π(x1, u1)= −1, π(x1, u2) = 0,
π(x2, u1)= 0, π(x2, u2) = 1.

(12.4.9)

∗ β = 0.9.
� Solution:

∗ Optimal policy: always choose u2, moving to x2
∗ Value function:

V (x1) = 9, V (x2) = 10.

∗ x2 is the unique steady state, and is stable
� Value iteration with V 0(x1) = V

0(x2) = 0 converges linearly:

V 1(x1) = 0, V
1(x2) = 1, U

1(x1) = 2, U
1(x2) = 2,

V 2(x1) = 0.9, V
2(x2) = 1.9, U

2(x1) = 2, U
2(x2) = 2,

V 3(x1) = 1.71, V
3(x2) = 2.71, U

3(x1) = 2, U
3(x2) = 2,

� Policy iteration converges after two iterations

V 1(x1) = 0, V
1(x2) = 1, U

1(x1) = 2, U
1(x2) = 2,

V 2(x1) = 9, V
2(x2) = 10, U

2(x1) = 2, U
2(x2) = 2,

13

� Upwind Gauss-Seidel
� Value function at absorbing states is trivial to compute

∗ Suppose s is absorbing state with control u
∗ V (s) = π(s, u)/(1− β).

� With absorbing state V (s) we compute V (s0) of any s0 that sends
system to s.

V (s0) = π (s0, u) + βV (s)

� With V (s0), we can compute values of states s00 that send system to
s0; etc.

14

� Alternating Sweep
� It may be difficult to Þnd proper order.

� Idea: alternate between two approaches with different directions.

W = V k,

Wi = maxu π(xi, u) + β
Pn

j=1 qij(u)Wj, i = 1, 2, 3, ..., n

Wi = maxu π(xi, u) + β
Pn

j=1 qij(u)Wj, i = n, n− 1, ..., 1
V k+1=W

� Will always work well in one-dimensional problems since state moves

either right or left, and alternating sweep will exploit this half of the

time.

� In two dimensions, there may still be a natural ordering to be exploited.

� Simulated Upwind Gauss-Seidel
� It may be difficult to Þnd proper order in higher dimensions

� Idea: simulate using latest policy function to Þnd downwind direction

∗ Simulate to get an example path, x1, x2, x3, x4, ..., xm
∗ Execute Gauss-Seidel with states xm, xm−1, xm−2,, x1

15

Linear Programming Approach

� If D is Þnite, we can reformulate dynamic programming as a linear pro-

gramming problem.

� (12.3.4) is equivalent to the linear program
minVi

Pn
i=1 Vi

s.t. Vi ≥ π(xi, u) + β
Pn

j=1 qij(u)Vj, ∀i, u ∈ D,
(12.4.10)

� Computational considerations
� (12.4.10) may be a large problem

� Trick and Zin (1997) pursued an acceleration approach with success.

� OR literature did not favor this approach, but recent work by Daniela

Pucci de Farias and Ben van Roy has revived interest.

16

Continuous states: discretization

� Method:
� �Replace� continuous X with a Þnite

X∗ = {xi, i = 1, · · · , n} ⊂ X

� Proceed with a Þnite-state method.

� Problems:
� Sometimes need to alter space of controls to assure landing on an x in

X.

� A Þne discretization often necessary to get accurate approximations

17

Continuous States: Linear-Quadratic Dynamic Programming

� Problem:

max
ut

TX
t=0

βt
µ
1

2
x>t Qtxt + u

>
t Rtxt +

1

2
u>t Stut

¶
+
1

2
x>T+1WT+1xT+1

(12.6.1)

xt+1 = Atxt +Btut,

� Bellman equation:

V (x, t) = max
ut

1

2
x>Qtx+ u>t Rtx +

1

2
u>t Stut + βV (Atx+Btut, t+ 1).

(12.6.2)

Finite horizon

� Key fact: We know solution is quadratic, solve for the unknown coefficients
� The guess V (x, t) = 1

2x
>Wt+1x implies f.o.c.

0 = Stut +Rtx+ βB
>
t Wt+1(Atx +Btut),

� F.o.c. implies the time t control law

ut=−(St + βB>t Wt+1Bt)
−1(Rt + βB>t Wt+1At)x (12.6.3)

≡Utx.

� Substitution into Bellman implies Riccati equation for Wt:

Wt = Qt + βA
>
t Wt+1At + (βB

>
t Wt+1At +R

>
t)Ut. (12.6.4)

� Value function method iterates (12.6.4) beginning with known WT+1

matrix of coefficients.

18

Autonomous, InÞnite-horizon case.

� Assume Rt = R, Qt = Q, St = S, At = A, and Bt = B
� The guess V (x) ≡ 1

2x
>Wx implies the algebraic Riccati equation

W =Q+ βA>WA− (βB>WA+R>) (12.6.5)

×(S + βB>WB)−1(βB>WB +R>).

� Two convergent procedures:
� Value function iteration:

W0 : a negative deÞnite initial guess

Wk+1=Q+ βA
>WkA− (βB>WkA+R

>)

×(S + βB>WkB)
−1(βB>WkB +R

>). (12.6.6)

� Policy function iteration:

W0 : initial guess

Ui+1=−(S + βB>WiB)
−1(R + βB>WiA) : optimal policy for Wi

Wi+1=
1
2Q+

1
2U

>
i+1SUi+1 + U

>
i+1R

1− β : value of Ui

19

Lessons

� We used a functional form to solve the dynamic programming problem
� We solve for unknown coefficients
� We did not restrict either the state or control set
� Can we do this in general?

Continuous Methods for Continuous-State Problems

� Basic Bellman equation:
V (x) = max

u∈D(x)
π(u, x) + β E{V (x+)|x, u)} ≡ (TV)(x). (12.7.1)

� Discretization essentially approximates V with a step function

� Approximation theory provides better methods to approximate contin-

uous functions.

� General Task
� Find good approximation for V

� Identify parameters

20

Parametric Approach: Approximating V (x)

� Choose a Þnite-dimensional parameterization
V (x)

.
= �V (x; a), a ∈ Rm (12.7.2)

and a Þnite number of states

X = {x1, x2, · · · , xn}, (12.7.3)

� polynomials with coefficients a and collocation points X

� splines with coefficients a with uniform nodes X

� rational function with parameters a and nodes X

� neural network

� specially designed functional forms

� Objective: Þnd coefficients a ∈ Rm such that �V (x; a) �approximately�

satisÞes the Bellman equation.

� Data for approximating V (x)
� Conventional methods just generate data on V (xj):

vj = max
u∈D(xj)

π(u, xj) + β

Z
�V (x+; a)dF (x+|xj, u) (12.7.5)

� Envelope theorem:

∗ If solution u is interior,
v0j = πx(u, xj) + β

Z
�V (x+; a)dFx(x

+|xj, u)
∗ If solution u is on boundary

v0j = µ + πx(u, xj) + β
Z
�V (x+; a)dFx(x

+|xj, u)
where µ is a Kuhn-Tucker multiplier

� Since computing v0j is cheap, we should include it in data

� We review approximation methods.
21

Approximation Methods

� General Objective: Given data about a function f(x) (which is difficult to
compute) construct a simpler function g(x) that approximates f(x).

� Questions:
� What data should be produced and used?

� What family of �simpler� functions should be used?

� What notion of approximation do we use?

� How good can the approximation be?

� How simple can a good approximation be?

� Comparisons with statistical regression
� Both approximate an unknown function

� Both use a Þnite amount of data

� Statistical data is noisy; we assume here that data errors are small

� Nature produces data for statistical analysis; we produce the data in

function approximation

� Our approximation methods are like experimental design with very

small experimental error

22

Types of Approximation Methods

� Interpolation Approach: Þnd a function from an n-dimensional family of
functions which exactly Þts n data items

� Lagrange polynomial interpolation
� Data: (xi, yi) , i = 1, .., n.

� Objective: Find a polynomial of degree n−1, pn(x), which agrees with
the data, i.e.,

yi = f(xi), i = 1, .., n

� Result: If the xi are distinct, there is a unique interpolating polynomial

� Hermite polynomial interpolation
� Data: (xi, yi, y

0
i) , i = 1, .., n.

� Objective: Find a polynomial of degree 2n−1, p(x), which agrees with
the data, i.e.,

yi=p(xi), i = 1, .., n

y0i=p
0(xi), i = 1, .., n

� Result: If the xi are distinct, there is a unique interpolating polynomial

� Least squares approximation
� Data: A function, f(x).

� Objective: Find a function g(x) from a class G that best approximates

f(x), i.e.,

g = argmax
g∈G

kf − gk2

23

� Chebyshev polynomials - Example of orthogonal polynomials
� [a, b] = [−1, 1]
� w(x) =

¡
1− x2¢−1/2

� Tn(x) = cos(n cos
−1 x)

� Recurrence formula:

T0(x)=1

T1(x)=x

Tn+1(x)=2xTn(x)− Tn−1(x),

Figure 1:

24

� General intervals
� Few problems have the speciÞc intervals used in deÞnition of Chebshev

polynomials

� Map compact interval [a, b] to [−1, 1] by

y = −1 + 2x− a
b− a

then φi
¡−1 + 2x−ab−a

¢
are the Chebyshev polynomials adapted to [a, b]

Regression

� Data: (xi, yi) , i = 1, .., n.
� Objective: Find β ∈ Rm, m ≤ n, with yi .= f(xi;β), i = 1, .., n.
� Least Squares regression:

min
β∈Rm

X
(yi − f (xi;β))2

Chebyshev Regression

� Chebyshev Regression Data:
� (xi, yi) , i = 1, .., n > m, xi are the n zeroes of Tn(x) adapted to [a, b]

� Chebyshev Interpolation Data:
(xi, yi) , i = 1, .., n = m,xi are the n zeroes of Tn(x)adapted to [a, b]

25

Minmax Approximation

� Data: (xi, yi) , i = 1, .., n.
� Objective: L∞ Þt

min
β∈Rm

max
i
kyi − f (xi;β)k

� Problem: Difficult to compute

� Chebyshev minmax property
Theorem 2 Suppose f : [−1, 1] → R is Ck for some k ≥ 1, and let In
be the degree n polynomial interpolation of f based at the zeroes of Tn(x).

Then

k f − In k∞≤
µ
2

π
log(n + 1) + 1

¶
× (n− k)!

n!

³π
2

´k µb− a
2

¶k
k f (k) k∞

� Chebyshev interpolation:
� converges in L∞

� essentially achieves minmax approximation

� easy to compute

� does not approximate f 0

26

Splines

DeÞnition 3 A function s(x) on [a, b] is a spline of order n iff

1. s is Cn−2 on [a, b], and

2. there is a grid of points (called nodes) a = x0 < x1 < · · · < xm = b such
that s(x) is a polynomial of degree n− 1 on each subinterval [xi, xi+1],
i = 0, . . . ,m− 1.
Note: an order 2 spline is the piecewise linear interpolant.

� Cubic Splines
� Lagrange data set: {(xi, yi) | i = 0, · · · , n}.
� Nodes: The xi are the nodes of the spline

� Functional form: s(x) = ai + bi x + ci x
2 + di x

3 on [xi−1, xi]

� Unknowns: 4n unknown coefficients, ai, bi, ci, di, i = 1, · · ·n.

27

� Conditions:
� 2n interpolation and continuity conditions:

yi =ai + bixi + cix
2
i + dix

3
i ,

i = 1, ., n

yi =ai+1 + bi+1xi + ci+1x
2
i + di+1x

3
i ,

i = 0, ., n− 1

� 2n− 2 conditions from C2 at the interior: for i = 1, · · ·n− 1,
bi + 2cixi + 3dix

2
i =bi+1 + 2ci+1 xi + 3di+1x

2
i

2ci + 6dixi=2ci+1 + 6di+1xi

� Equations (1�4) are 4n−2 linear equations in 4n unknown parameters,
a, b, c, and d.

� construct 2 side conditions:

∗ natural spline: s00(x0) = 0 = s00(xn); it minimizes total curvature,R xn
x0
s00(x)2 dx, among solutions to (1-4).

∗ Hermite spline: s0(x0) = y00 and s0(xn) = y0n (assumes extra data)
∗ Secant Hermite spline: s0(x0) = (s(x1) − s(x0))/(x1 − x0) and
s0(xn) = (s(xn)− s(xn−1))/(xn − xn−1).

∗ not-a-knot: choose j = i1, i2, such that i1 + 1 < i2, and set dj =
dj+1.

� Solve system by special (sparse) methods; see spline Þt packages

28

� B-Splines: A basis for splines
� Put knots at {x−k, · · · , x−1, x0, · · · , xn}.
� Order 1 splines: step function interpolation spanned by

B0i (x) =

⎧⎪⎨⎪⎩
0, x < xi,

1, xi ≤ x < xi+1,
0, xi+1 ≤ x,

� Order 2 splines: piecewise linear interpolation and are spanned by

B1i (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , x ≤ xi or x ≥ xi+2,

x−xi
xi+1−xi , xi ≤ x ≤ xi+1,

xi+2−x
xi+2−xi+1 , xi+1 ≤ x ≤ xi+2.

The B1i -spline is the tent function with peak at xi+1 and is zero for

x ≤ xi and x ≥ xi+2.
� Both B0 and B1 splines form cardinal bases for interpolation at the

xi�s.

� Higher-order B-splines are deÞned by the recursive relation

Bki (x)=

µ
x− xi
xi+k − xi

¶
Bk−1i (x)

+

µ
xi+k+1 − x
xi+k+1 − xi+1

¶
Bk−1i+1 (x)

29

� Shape-preservation
� Concave (monotone) data may lead to nonconcave (nonmonotone) ap-

proximations.

� Example

Figure 2:

30

� Schumaker Procedure:
1. Take level (and maybe slope) data at nodes xi

2. Add intermediate nodes z+i ∈ [xi, xi+1]
3. Create quadratic spline with nodes at the x and z nodes to interpolate

data and preserves shape.

� Many other procedures exist for one-dimensional problems
� Few procedures exist for two-dimensional problems
� Higher dimensions are difficult, but many questions are open.

� Spline summary:
� Evaluation is cheap

∗ Splines are locally low-order polynomial.
∗ Can choose intervals so that Þnding which [xi, xi+1] contains a spe-
ciÞc x is easy.

� Good Þts even for functions with discontinuous or large higher-order

derivatives.

� Can use splines to preserve shape conditions

31

Multidimensional approximation methods

� Lagrange Interpolation
� Data: D ≡ {(xi, zi)}Ni=1 ⊂ Rn+m, where xi ∈ Rn and zi ∈ Rm
� Objective: Þnd f : Rn → Rm such that zi = f(xi).

� Task: Find combinations of interpolation nodes and spanning functions

to produce a nonsingular (well-conditioned) interpolation matrix.

Tensor products

� If A and B are sets of functions over x ∈ Rn, y ∈ Rm, their tensor product
is

A⊗B = {ϕ(x)ψ(y) | ϕ ∈ A, ψ ∈ B}.
� Given a basis for functions of xi, Φi = {ϕik(xi)}∞k=0, the n-fold tensor
product basis for functions of (x1, x2, . . . , xn) is

Φ =

(
nY
i=1

ϕiki(xi) | ki = 0, 1, · · · , i = 1, . . . , n
)

Multidimensional Splines

� B-splines: Multidimensional versions of splines can be constructed through
tensor products; here B-splines would be useful.

� Summary
� Tensor products directly extend one-dimensional methods to n dimen-

sions

� Curse of dimensionality often makes tensor products impractical

32

Complete polynomials

� In general, the complete set of polynomials of total degree k in n variables.

Pnk ≡ {xi11 · · ·xinn |
nX
7=1

i7 ≤ k, 0 ≤ i1, · · · , in}

� Sizes of alternative bases
degree k Pnk Tensor Prod.

2 1 + n + n(n + 1)/2 3n

3 1 + n + n(n+1)
2 + n2 + n(n−1)(n−2)

6 4n

� Complete polynomial bases contains fewer elements than tensor prod-

ucts.

� Asymptotically, complete polynomial bases are as good as tensor prod-

ucts.

� For smooth n-dimensional functions, complete polynomials are more

efficient approximations

� Construction
� Compute tensor product approximation, as in Algorithm 6.4

� Drop terms not in complete polynomial basis (or, just compute coeffi-

cients for polynomials in complete basis).

� Complete polynomial version is faster to compute since it involves fewer

terms

33

Parametric Approach: Approximating T - Expectations

� For each xj, (TV)(xj) is deÞned by
vj = (TV)(xj) = max

u∈D(xj)
π(u, xj) + β

Z
�V (x+; a)dF (x+|xj, u) (12.7.5)

� The deÞnition includes an expectation
E{V (x+; a)|xj, u)} =

Z
�V (x+; a)dF (x+|xj, u)

� How do we approximate the integral?
Integration

� Most integrals cannot be evaluated analytically
� We examine various integration formulas that can be used.

Newton-Cotes Formulas

� Trapezoid Rule: piecewise linear approximation
� nodes: xj = a + (j − 1

2)h, j = 1, 2, . . ., n, h = (b− a)/n
� for some ξ ∈ [a, b]Z b

a

f(x) dx=
h

2
[f0 + 2f1 + · · · + 2fn−1 + fn]

− h2 (b− a)
12

f 00(ξ)

� Simpson�s Rule: piecewise quadratic approximationZ b

a

f(x) dx=
h

3
[f0 + 4f1 + 2f2 + 4f3 + · · · + 4fn−1 + fn]

− h4(b− a)
180

f (4)(ξ)

� Obscure rules for degree 3, 4, etc. approximations.
34

Gaussian Formulas

� All integration formulas are of formZ b

a

f(x) dx
.
=

nX
i=1

ωif(xi) (7.2.1)

for some quadrature nodes xi ∈ [a, b] and quadrature weights ωi.
� Newton-Cotes use arbitrary xi

� Gaussian quadrature uses good choices of xi nodes and ωi weights.

� Exact quadrature formulas:
� Let Fk be the space of degree k polynomials
� A quadrature formula is exact of degree k if it correctly integrates each

function in Fk
� Gaussian quadrature formulas use n points and are exact of degree

2n− 1

Gauss-Chebyshev Quadrature

� Domain: [−1, 1]
� Weight: (1− x2)−1/2

� Formula:Z 1

−1
f(x)(1− x2)−1/2 dx = π

n

nX
i=1

f(xi) +
π

22n−1
f (2n) (ξ)

(2n)!
(7.2.4)

for some ξ ∈ [−1, 1], with quadrature nodes

xi = cos

µ
2i− 1
2n

π

¶
, i = 1, ..., n. (7.2.5)

35

Arbitrary Domains

� Want to approximate R ba f(x) dx
� Different range, no weight function

� Linear change of variables x = −1 + 2(y − a)(b− a)
� Multiply the integrand by (1− x2)1/2 ±(1− x2)1/2 .
� C.O.V. formulaZ b

a

f(y) dy =
b− a
2

Z 1

−1
f

µ
(x + 1)(b− a)

2
+ a

¶ ¡
1− x2¢1/2
(1− x2)1/2

dx

� Gauss-Chebyshev quadrature producesZ b

a

f(y) dy
.
=
π(b− a)
2n

nX
i=1

f

µ
(xi + 1)(b− a)

2
+ a

¶¡
1− x2i

¢1/2
where the xi are Gauss-Chebyshev nodes over [−1, 1].

36

Gauss-Hermite Quadrature

� Domain: [−∞,∞]]
� Weight: e−x2

� Formula: Z ∞

−∞
f(x)e−x

2
dx =

nX
i=1

ωif(xi) +
n!
√
π

2n
· f

(2n)(ξ)

(2n)!

for some ξ ∈ (−∞,∞).
� Example formulas

Table 7.4: Gauss � Hermite Quadrature

N xi ωi
3 0.1224744871(1) 0.2954089751

0.0000000000 0.1181635900(1)

4 0.1650680123(1) 0.8131283544(−1)
0.5246476232 0.8049140900

7 0.2651961356(1) 0.9717812450(−3)
0.1673551628(1) 0.5451558281(−1)
0.8162878828 0.4256072526

0.0000000000 0.8102646175

37

� Normal Random Variables
� Y is distributed N(µ, σ2)

� Expectation is integration:

E{f(Y)} = (2πσ2)−1/2
Z ∞

−∞
f(y)e

−(y−µ)2
2σ2 dy

� Use Gauss-Hermite quadrature

∗ linear COV x = (y − µ)/√2 σ
∗ COV formula:Z ∞

−∞
f(y)e−(y−µ)

2/(2σ2) dy =

Z ∞

−∞
f(
√
2σ x + µ)e−x

2√
2σ dx

∗ COV quadrature formula:

E{f(Y)} .= π−12
nX
i=1

ωif(
√
2σ xi + µ)

where the ωi and xi are the Gauss-Hermite quadrature weights and

nodes over [−∞,∞].

38

Multidimensional Integration

� Many dynamic programming problems have several dimensions
� Multidimensional integrals are much more difficult
� Simple methods suffer from curse of dimensionality

� There are methods which avoid curse of dimensionality

Product Rules

� Build product rules from one-dimension rules
� Let x7i, ω7i, i = 1, · · · ,m, be one-dimensional quadrature points and
weights in dimension 7 from a Newton-Cotes rule or the Gauss-Legendre

rule.

� The product ruleZ
[−1,1]d

f(x)dx
.
=

mX
i1=1

· · ·
mX
id=1

ω1i1ω
2
i2
· · ·ωdid f(x1i1, x2i2, · · · , xdid)

� Curse of dimensionality:
� md functional evaluations is md for a d-dimensional problem with m

points in each direction.

� Problem worse for Newton-Cotes rules which are less accurate in R1.

39

Monomial Formulas: A Nonproduct Approach

� Method
� Choose xi ∈ D ⊂ Rd, i = 1, ..., N
� Choose ωi ∈ R, i = 1, ..., N
� Quadrature formula Z

D

f(x) dx
.
=

NX
i=1

ωi f(x
i) (7.5.3)

� A monomial formula is complete for degree 7 if
NX
i=1

ωi p(x
i) =

Z
D

p(x) dx (7.5.3)

for all polynomials p(x) of total degree 7; recall that P7 was deÞned in
chapter 6 to be the set of such polynomials.

� For the case 7 = 2, this implies the equationsPN
i=1 ωi =

R
D 1 · dxPN

i=1 ωix
i
j =

R
D xj dx, j = 1, · · · , dPN

i=1 ωix
i
jx
i
k=

R
D xjxk dx, j, k = 1, · · · , d

(7.5.4)

� 1 + d+ 1
2d(d+ 1) equations

� N weights ωi and the N nodes xi each with d components, yielding a

total of (d+ 1)N unknowns.

40

� Simple examples
� Let ej ≡ (0, . . . , 1, . . . , 0) where the �1� appears in column j.
� 2d points and exactly integrates all elements of P3 over [−1, 1]dZ

[−1,1]d
f
.
=ω

dX
i=1

¡
f(uei) + f(−uei)¢

u=

µ
d

3

¶1/2
, ω =

2d−1

d

� For P5 the following scheme works:R
[−1,1]d f

.
=ω1f(0) + ω2

Pd
i=1

¡
f(uei) + f(−uei)¢

+ω3
P

1≤i<d,
i<j≤d

¡
f(u(ei ± ej)) + f(−u(ei ± ej))¢

where

ω1=2
d(25 d2 − 115 d+ 162), ω2 = 2

d(70− 25d)
ω3=

25

324
2d, u = (

3

5
)1/2.

41

Parametric Approach: Approximating T - Maximization

� For each xj, (TV)(xj) is deÞned by

vj = (TV)(xj) = max
u∈D(xj)

π(u, xj) + β

Z
�V (x+; a)dF (x+|xj, u) (12.7.5)

� In practice, we compute the approximation �T
vj = (�TV)(xj)

.
= (TV)(xj)

using some integration method.

E{V (x+; a)|xj, u)} .=
X
7

ω7 �V (g(xj, u, ε7); a)

� We now come to the maximization step: for xi ∈ X, evaluate
vi = (T �V)(xi)

� Use appropriate optimization method, depending on the smoothness of

the maximand

� Hot starts

� Concave stopping rules

� When we have computed the vi (and perhaps v0i) we execute the Þtting
step:

� Data: (vi, v
0
i, xi), i = 1, · · · , n

� Objective: Þnd an a ∈ Rm such that �V (x; a) best Þts the data
� Methods: determined by �V (x; a)

42

Parametric Approach: Value Function Iteration

guess a−→ �V (x; a)

−→(vi, xi), i = 1, · · · , n
−→new a

� Comparison with discretization
� This procedure examines only a Þnite number of points, but does not

assume that future points lie in same Þnite set.

� Our choices for the xi are guided by systematic numerical considera-

tions.

� Synergies
� Smooth interpolation schemes allow us to use Newton�s method in the

maximization step.

� They also make it easier to evaluate the integral in (12.7.5).

� Finite-horizon problems
� Value function iteration is only possible procedure since V (x, t) de-

pends on time t.

� Begin with terminal value function, V (x, T)

� Compute approximations for each V (x, t), t = T − 1, T − 2, etc.

43

Algorithm 12.5: Parametric Dynamic Programming

with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).

Step 0: Choose functional form for �V (x; a), and choose

the approximation grid, X = {x1, ..., xn}.
Make initial guess �V (x; a0), and choose stopping

criterion A > 0.

Step 1: Maximization step: Compute

vj = (T �V (·; ai))(xj) for all xj ∈ X.
Step 2: Fitting step: Using the appropriate approximation

method, compute the ai+1 ∈ Rm such that
�V (x; ai+1) approximates the (vi, xi) data.

Step 3: If k �V (x; ai)− �V (x; ai+1) k< A, STOP; else go to step 1.

44

� Convergence
� T is a contraction mapping

� �T may be neither monotonic nor a contraction

� Shape problems
� An instructive example

Figure 3:

� Shape problems may become worse with value function iteration

� Shape-preserving approximation will avoid these instabilities

45

Comparisons
We apply various methods to the deterministic growth model

Relative L2 Errors over [0.7,1.3]

N (β, γ) :

(.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)

Discrete model

12 7.6e-02 2.8e-03 5.3e-03 7.9e-01 1.8e-01 1.1e-02

1200 1.0e-04 2.1e-05 5.4e-05 2.9e-03 5.4e-03 1.3e-04

Linear Interpolation

4 7.9e-03 4.1e-03 2.4e-03 8.0e-03 4.1e-03 2.4e-03

12 1.5e-03 9.8e-04 5.6e-04 1.5e-03 1.0e-03 6.3e-04

120 1.1e-04 3.7e-05 1.3e-05 1.4e-04 8.4e-05 4.2e-05

Cubic Spline

4 6.6e-03 5.0e-04 1.3e-04 7.1e-03 5.7e-04 1.8e-04

12 8.7e-05 1.5e-06 1.8e-07 1.3e-04 4.9e-06 1.1e-06

40 7.2e-08 1.8e-08 5.5e-09 7.6e-07 8.8e-09 4.9e-09

120 5.3e-09 5.6e-10 1.3e-10 4.2e-07 4.1e-09 1.5e-09

Polynomial (without slopes)

4 DNC 5.4e-04 1.6e-04 1.4e-02 5.6e-04 1.7e-04

12 3.0e-07 2.0e-09 4.3e-10 5.8e-07 4.5e-09 1.5e-09

Shape Preserving Quadratic Hermite Interpolation

4 4.7e-04 1.5e-04 6.0e-05 5.0e-04 1.7e-04 7.3e-05

12 3.8e-05 1.1e-05 3.7e-06 5.9e-05 1.7e-05 6.3e-06

120 2.2e-07 1.7e-08 3.1e-09 4.0e-06 4.6e-07 5.9e-08

Shape Preserving Quadratic Interpolation (ignoring slopes)

4 1.1e-02 3.8e-03 1.2e-03 2.2e-02 7.3e-03 2.2e-03

12 6.7e-04 1.1e-04 3.1e-05 1.2e-03 2.1e-04 5.7e-05

120 2.5e-06 1.5e-07 2.2e-08 4.3e-06 8.5e-07 1.9e-07

46

General Parametric Approach: Policy Iteration

� Basic Bellman equation:
V (x) = max

u∈D(x)
π(u, x) + β E{V (x+)|x, u)} ≡ (TV)(x).

� Policy iteration:
� Current guess: a Þnite-dimensional linear parameterization

V (x)
.
= �V (x; a), a ∈ Rm

� Iteration: compute optimal policy today if �V (x; a) is value tomorrow

U (x) = πu(xi, U (x) , t) + β
d

du

³
E
n
�V
¡
x+; a

¢ |x, U (x))o´
using some approximation scheme �U(x; b)

� Compute the value function if the policy �U(x; b) is used forever, which

is solution to the linear integral equation

�V (x; a0) = π(�U(x; b), x) + β E{ �V (x+; a0)|x, �U(x; b))}
that can be solved by a projection method

47

Summary:

� Discretization methods
� Easy to implement

� Numerically stable

� Amenable to many accelerations

� Poor approximation to continuous problems

� Continuous approximation methods
� Can exploit smoothness in problems

� Possible numerical instabilities

� Acceleration is less possible

48

