Solution of Leader-Follower Games

Sven Leyffer leyffer@mcs.anl.gov
Mathematics & Computer Science Division,
Argonne National Laboratory

Introduction: Nash & Stackelberg Games
Formulation of MPECs as NLPs
Convergence of NLP Approach
Multi-Leader-Follower Games
Conclusions
NASH & STACKELBERG GAMES
Recap: Nash Games

Nash Game: non-cooperative equilibrium of several players

\[z_i^* \in \left\{ \begin{array}{l} \arg \min_{z_i} \quad b_i(\hat{z}) \\ \text{subject to} \quad c_i(z_i) \geq 0 \end{array} \right\} \quad \text{player } i \]

- \(\hat{z} = (z_1^*, \ldots, z_{i-1}^*, z_i, z_{i+1}^*, \ldots, z_l^*) \)
- All players are equal
Recap: Nash Games

Introduce slacks s, and form optimality conditions ...

\[\nabla b(z) - \nabla c(z) \lambda = 0 \]
\[s - c(z) = 0 \]
\[0 \leq \lambda \perp s \geq 0 \]

where

- $b(z) = (b_1(z), \ldots, b_k(z))$ & $c(z) = (c_1(z), \ldots, c_k(z))$
- \perp means $\lambda^T s = 0$, either $\lambda_i > 0$ or $s_i > 0$

$y = (z, \lambda, s)$ \quad ... becomes ... \quad \left\{ \begin{array}{l}
 h(y) = 0 \\
 0 \leq y_1 \perp y_2 \geq 0
\end{array} \right.$

- Nonlinear complementarity problem (NCP)
- Robust large scale solvers exist: PATH
Stackelberg Games

Single dominant player (leader) & Nash followers

\[
\begin{align*}
\text{minimize} & \quad f(x, y) \\
\text{subject to} & \quad h(x, y) = 0 \\
& \quad 0 \leq y_1 \perp y_2 \geq 0
\end{align*}
\]

Nash game \((h(x, y) = 0)\) parameterized in leader’s variables \(x\)

Mathematical Program with Equilibrium Constraints (MPEC)
Mathematical Program with Equilibrium Constraints

Mathematical Program with Equilibrium Constraints (MPEC)

\[
\begin{align*}
\text{minimize} & \quad f(x) & \text{objective} \\
\text{subject to} & \quad c(x) \geq 0 & \text{constraints} \\
& \quad 0 \leq x_1 \perp x_2 \geq 0 & \text{complementarity}
\end{align*}
\]

where \(x = (x_0, x_1, x_2) \) ... partition of variables and

\[
0 \leq x_1 \perp x_2 \geq 0 \iff \text{either } x_{1i} = 0 \text{ or } x_{2i} = 0
\]

... equality constraints \(h(x) = 0 \) are no problem!
EXAMPLE: COMMODITIES FLOW IN NETWORK
Commodities Flow in a Network

- variables are flow on arcs & total flow:

 var x \{\text{ARCS, COMMODITIES}\} >= 0;
 var f \{(i,j) \text{ in ARCS}\}
 = \text{sum} \{k \text{ in COMMODITIES}\} x[i,j,k];

- each player (commodity) minimizes time in network

 minimize time \{k \text{ in COMMODITIES}\}:
 \text{sum} \{(i,j) \text{ in ARCS}\} (\alpha[i,j] \times f[i,j] + \beta[i,j] \times (f[i,j]/\kappa[i,j]/5)^5);

- subject to conservation of flow (supply/demand)

 subject to conserve \{i \text{ in NODES, k in COMMODITIES}\}:
 \text{sum} \{(i,j) \text{ in ARCS}\} x[i,j,k] <= \text{sum}\{(j,i) \text{ in ARCS}\} x[j,i,k] + b[i,k];
Flow of Commodities Through a Network

set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES;

param b {NODES, COMMODITIES} default 0;
param alpha {ARCS} >= 0;
param beta {ARCS} >= 0;
param kappa {ARCS} >= 0;

var x {ARCS, COMMODITIES} >= 0;
var f {(i,j) in ARCS}
 = sum {k in COMMODITIES} x[i,j,k];
Flow of Commodities Through a Network

minimize time \{k \in \text{COMMODITIES}\}:
\sum \{(i,j) \in \text{ARCS}\} (\alpha[i,j]*f[i,j] \\
+ \beta[i,j]*(f[i,j]/\kappa[i,j]/5)^5); \\

subject to \\
\text{conserve} \{i \in \text{NODES}, k \in \text{COMMODITIES}\}: \\
\sum \{(i,j) \in \text{ARCS}\} x[i,j,k] \\
\leq \sum\{(j,i) \in \text{ARCS}\} x[j,i,k] + b[i,k]; \\

\text{problem player} \{k \in \text{COMMODITIES}\}: \\
\text{time}[k], \quad \# \text{objective} \\
\{i \in \text{NODES}\} \text{conserve}[i,k], \quad \# \text{constraints} \\
\{(i,j) \in \text{ARCS}\} x[i,j,k], f; \quad \# \text{variables}
Nash Game: Complementarity Model

subject to

d_obj {(i,j) in ARCS, k in COMMODITIES}:

\[0 \leq x_{i,j,k} \text{ complements } \alpha_{i,j} + \beta_{i,j} \frac{f_{i,j}}{\kappa_{i,j}}^4 + p_{i,k} \geq p_{j,k}; \]

conserve {i in NODES, k in COMMODITIES}:

\[0 \leq p_{i,k} \text{ complements } \sum{(j,i) in ARCS} x_{j,i,k} + d_{i,k} \geq \sum{(i,j) in ARCS} x_{i,j,k}; \]

flow {(i,j) in ARCS} :

\[f_{i,j} = \sum{k in COMMODITIES} x_{i,j,k} \text{ complements } f_{i,j}; \text{ ### not needed here} \]
Stackelberg Game: MPEC

- introduce toll arcs (faster, but carry cost)
- leader chooses tolls to maximize profit ...
 ... or minimize congestion
- followers move optimally (Wardrop’s principle)
Stackelberg Game: MPEC

set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES;

param b {NODES, COMMODITIES} default 0; # Supply/demand
param alpha {ARCS} >= 0; # Linear part
param beta {ARCS} >= 0; # Nonlinear part
param kappa {ARCS} >= 0; # Nonlinear part

var t {(i,j) in TOLL} # Tolls
 >= tl[i,j], <= tu[i,j],
 := (tl[i,j] + tu[i,j])/2 ;

var x {ARCS, COMMODITIES}; # Flow on arcs
var p {NODES, COMMODITIES}; # Multipliers
var f {(i,j) in ARCS}; # Total flow
Stackelberg Game: MPEC

\[
\text{maximize revenue: } \sum_{(i,j) \in \text{TOLL}} t[i,j] * f[i,j];
\]

subject to

\[
\text{d_obj } \{(i,j) \in \text{ARCS}, k \in \text{COMMODITIES} \}:
\]
\[
0 \leq x[i,j,k] \text{ complements } \alpha[i,j] + \beta[i,j] \cdot (f[i,j]/\kappa[i,j])^4
\]
\[
+ (\text{if } (i,j) \in \text{TOLL then } t[i,j] \text{ else } 0)
\]
\[
+ p[i,k] \geq p[j,k];
\]

\[
\text{conserve } \{i \in \text{NODES}, k \in \text{COMMODITIES} \}:
\]
\[
0 \leq p[i,k] \text{ complements } \sum\{(j,i) \in \text{ARCS}\} x[j,i,k] + b[i,k]
\]
\[
\geq \sum\{(i,j) \in \text{ARCS}\} x[i,j,k];
\]

\[
\text{flow } \{(i,j) \in \text{ARCS}\}:
\]
\[
f[i,j] = \sum \{k \in \text{COMMODITIES}\} x[i,j,k];
\]
Solving Large Stackelberg Games

Toll pricing models get large ...

<table>
<thead>
<tr>
<th># nodes</th>
<th># variables</th>
<th># constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>112</td>
<td>109</td>
</tr>
<tr>
<td>25</td>
<td>5000</td>
<td>2500</td>
</tr>
</tbody>
</table>

... depending on arches etc ...
Solving Large Stackelberg Games

Toll pricing models get large ...

<table>
<thead>
<tr>
<th># nodes</th>
<th># variables</th>
<th># constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>112</td>
<td>109</td>
</tr>
<tr>
<td>25</td>
<td>5000</td>
<td>2500</td>
</tr>
</tbody>
</table>

... depending on arches etc ...

Exploit NCP solvers to set-up MPECs:

1. fix leader’s variables & solve NCP (Nash)
2. unfix leader’s variables & solve MPEC (Stackelberg)

⇒ orders of magnitude faster than MPEC ...
From Nash to Stackelberg with AMPL

```plaintext
model wardrop_tax.mod;
data wardrop_tax.dat;

problem NashGame:
    ### variables ... t[i,j] fixed automatically
    {(i,j) in ARCS} f[i,j],
    {(i,j) in ARCS, k in COMMODITIES} x[i,j,k],
    {i in NODES, k in COMMODITIES} p[i,k],
    ### constraints
    {(i,j) in ARCS, k in COMMODITIES} d_obj[i,j,k],
    {i in NODES, k in COMMODITIES} conserve[i,k],
    {(i,j) in ARCS} flow[i,j];

# ... solve NCP with fixed tolls
option solver pathampl; solve NashGame;
```
problem Stackelberg:

revenue, # objective

variables ... added tolls t[i,j]
{(i,j) in TOLL} t[i,j], {(i,j) in ARCS} f[i,j],
{(i,j) in ARCS, k in COMMODITIES} x[i,j,k],
{i in NODES, k in COMMODITIES} p[i,k],

constraints
{(i,j) in ARCS, k in COMMODITIES} d_obj[i,j,k],
{i in NODES, k in COMMODITIES} conserve[i,k],
{(i,j) in ARCS} flow[i,j];

option mpec_options "compl_ini=1"; # hot start
option solver mpec; solve Stackelberg;

display f; display tl, t, tu;
MORE EXAMPLES
More Examples of Stackelberg Games

- CO$_2$ abatement & transboundary pollution
- interaction of NO$_x$ & electricity markets
- volatility estimation in American option pricing
- transportation network design

MPECs allow us to ...

1. **model complex games** (heterogeneous players):
 e.g. electricity markets: ISO, generator

2. **simulate large & complex games**
 ... may need NCP approach first ...

3. **extend to design of markets**
 e.g. toll-pricing (where to raise tolls)
 ⇒ **integer variables** ... harder problem
FORMULATION OF MPECs AS NLPs
Mathematical Program with Equilibrium Constraints (MPEC)

\[
\begin{align*}
\text{minimize} & \quad f(x) & \quad \text{objective} \\
\text{subject to} & \quad c(x) \geq 0 & \quad \text{constraints} \\
& \quad 0 \leq x_1 \perp x_2 \geq 0 & \quad \text{complementarity}
\end{align*}
\]

where \(x = (x_0, x_1, x_2) \) ... partition of variables and

\[
0 \leq x_1 \perp x_2 \geq 0 \iff \text{either } x_{1i} = 0 \text{ or } x_{2i} = 0
\]

... equality constraints \(h(x) = 0 \) are no problem!
A Nonlinear Programming Approach

Replace equilibrium $0 \leq x_1 \perp x_2 \geq 0$ by $x_1^T x_2 \leq 0$

\Rightarrow standard nonlinear program (NLP)

\[
\text{(NLP)} \begin{cases}
\text{minimize} & f(x) \\
\text{subject to} & c(x) \geq 0 \\
& x_1, x_2 \geq 0 \\
& X_1 x_2 \leq 0
\end{cases}
\]

Advantage: standard (?) NLP; use large-scale solvers ...

Snag: nonlinear program (NLP) violates standard assumptions!
Mangasarian Fromowitz CQ fails

Mangasarian Fromowitz Constraint Qualification at feasible \hat{x}:

\[\hat{x}_1 = 0, \quad \hat{x}_2 > 0 \]

\[\Rightarrow x_1 \geq 0, \quad \text{and} \quad x_2 x_1 \leq 0 \quad \text{active} \]

\[\Rightarrow s_1 > 0, \quad \text{and} \quad \hat{x}_2 s_1 < 0 \]

MFCQ is minimalistic **stability assumption** for NLP

Failure of MFCQ implies:

1. Lagrange multiplier set **unbounded**
Mangasarian Fromowitz CQ fails

Mangasarian Fromowitz Constraint Qualification at feasible \hat{x}:

\[\hat{x}_1 = 0, \quad \hat{x}_2 > 0 \]

\[\Rightarrow x_1 \geq 0, \quad \text{and} \quad x_2 x_1 \leq 0 \quad \text{active} \]

\[\Rightarrow s_1 > 0, \quad \text{and} \quad \hat{x}_2 s_1 < 0 \]

MFCQ is minimalistic stability assumption for NLP

Failure of MFCQ implies:

1. Lagrange multiplier set unbounded
2. Constraint gradients linearly dependent
Mangasarian Fromowitz CQ fails

Mangasarian Fromowitz Constraint Qualification at feasible \hat{x}:

\[\hat{x}_1 = 0, \hat{x}_2 > 0 \]

⇒ \(x_1 \geq 0, \) and \(x_2 x_1 \leq 0 \) active

⇒ \(s_1 > 0, \) and \(\hat{s}_2 s_1 < 0 \)

MFCQ is minimalistic stability assumption for NLP

Failure of MFCQ implies:

1. Lagrange multiplier set unbounded
2. Constraint gradients linearly dependent
3. Central path does not exist
Mangasarian Fromowitz CQ fails

Early (1980s) numerical experience disappointing:
 • failure on 60% of problems!!

Popular conclusion:
 • NLP approach is “inherently unstable”
 • must expect “failure in presence of round-off errors”
 • arbitrary small perturbation $\epsilon > 0$:
 $x_1^T x_2 \leq -\epsilon \Rightarrow \text{infeasible}$
Mangasarian Fromowitz CQ fails

Early (1980s) numerical experience disappointing:
- failure on 60% of problems!!!

Popular conclusion:
- NLP approach is "inherently unstable"
- must expect "failure in presence of round-off errors"
- arbitrary small perturbation $\epsilon > 0$:
 $\Rightarrow x_1^T x_2 \leq -\epsilon \Rightarrow$ infeasible

Homer Simpson Approach to Numerical Analysis ...
- ... who perturbs structural zeros ???
- ... huge advances in NLP technology in 90s ...
CONVERGENCE OF NLP APPROACH
MPECs as NLPs

Mathematical Program with Equilibrium Constraints (MPEC)

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & c(x) \geq 0 \\
& 0 \leq x_1 \perp x_2 \geq 0
\end{align*}
\]

... formulated as nonlinear program (NLP):

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & c(x) \geq 0 \\
& x_1, x_2 \geq 0 \\
& X_1 x_2 \leq 0
\end{align*}
\]
Stationarity & Bounded Multipliers

Example \(x^* = (0, 1) \):

\[
\begin{align*}
\min_{x} & \quad \frac{1}{2}(x_1 - 1)^2 + (x_2 - 1)^2 \\
\text{s.t.} & \quad x_1, x_2 \geq 0, \quad x_1 x_2 \leq 0
\end{align*}
\]

First order conditions:

\[
\begin{pmatrix}
-1 \\
0
\end{pmatrix} = \begin{pmatrix}
\nu_1 \\
0
\end{pmatrix} - \begin{pmatrix}
\xi \\
0
\end{pmatrix}
\]

\(\nu_1 \) multiplier of \(x_1 \geq 0 \); \(\xi \) multiplier of \(x_1 x_2 \leq 0 \).

Equivalent NLP \((x_1 x_2 \leq 0)\) violates MFCQ

\(\Rightarrow \) unbounded multipliers

Multipliers form a ray \(\Rightarrow \exists \) bounded multipliers
Optimality Conditions for MPECs

Optimality conditions of equivalent NLP: \(\exists \lambda^*, \nu_1^*, \nu_2^*, \xi^* \geq 0 \)

\[
\nabla f(x^*) - \nabla c(x^*)^T \lambda^* - \begin{pmatrix}
0 \\
\nu_1^* - X_2^* \xi^* \\
\nu_2^* - X_1^* \xi^*
\end{pmatrix} = 0 \quad 1^{st} \text{ order}
\]

\[c(x^*) \geq 0, \ x_1^* \geq 0, \ x_2^* \geq 0 \ \text{and} \ \ X_1^* x_2^* \leq 0 \quad \text{primal feas.}
\]

\[c(x^*)^T \lambda = x_1^*^T \nu_1^* = x_2^*^T \nu_2^* = 0 \quad \text{compl. slack.}
\]

\[\ldots \ \xi > 0 \ \text{allows} \ \nu_1^* - X_2^* \xi^* < 0 \ \ldots \ \text{equality constraint} \ x_1 = 0
\]

Multipliers bounded if \(\|\xi^*\| < \infty \)
Convergence of SQP Methods

SQP: quadratic/linear approximation of NLP [Todd’s talk]

Theorem: SQP converges quadratically!

Proof: ... paraphrased from 7 pages ...

1. if \(x_1^{(k)^T} x_2^{(k)} = 0 \) then \(x_1^{(k+1)^T} x_2^{(k+1)} = 0 \)
 \[\Rightarrow \] standard SQP convergence proof

2. if \(x_1^{(k)^T} x_2^{(k)} > 0 \) then ...
 ... QP solver always picks non-singular basis
 \[\Rightarrow \] standard SQP convergence proof
Do Slacks Matter ???

Consider general equilibrium $0 \leq G(x) \perp H(x) \geq 0$:
Do Slacks Matter ???

Consider general equilibrium $0 \leq G(x) \perp H(x) \geq 0$: MPEC with nonlinear complementarity condition

“nice” stationary points at $(0, 2)$ and $(2, 0)$

\[
\begin{align*}
\min_{x} & \quad -x_1 - \frac{1}{2}x_2 \\
\text{subject to} & \quad x_1 + x_2 \leq 2 \\
& \quad 0 \leq x_1^2 - x_1 \perp x_2 \geq 0 \quad \text{nonlinear}
\end{align*}
\]

$x_0 = (-\epsilon, t)^T$ for $t \geq 0$:
- $x_k \rightarrow (0, t)^T$ quadratically
- $\xi \rightarrow \infty$ weird !!!
- active set singular in limit

\Rightarrow SQP gets stuck
DETOUR:
INTERIOR POINT METHODS
Interior Point Methods (IPM)

General NLP

$$\min_{x} f(x) \quad \text{subject to} \quad c(x) = 0 \quad \& \quad x \geq 0$$

Perturbed $\mu > 0$ optimality conditions $(x, z \geq 0)$

$$F_{\mu}(x, y, z) = \begin{cases} \nabla f(x) - \nabla c(x)^T y - z \\ c(x) \\ Xz - \mu e \end{cases} = 0$$

- Primal-dual formulation
- Central path $\{x(\mu), y(\mu), z(\mu) : \mu > 0\}$
- Apply Newton’s method for sequence $\mu \downarrow 0$
Newton’s method applied to primal-dual system gives ...

\[
\begin{bmatrix}
\nabla^2 \mathcal{L}_k & -A_k & -I \\
A_k^T & 0 & 0 \\
Z_k & 0 & X_k
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta z
\end{bmatrix}
= -F_\mu(x_k, y_k, z_k)
\]

where \(A_k = \nabla c(x_k)^T \), \(X_k \) diagonal matrix of \(x_k \).

Solvers: LOQO, KNITRO, IPOPT ... different factorization
Interior Point Methods (IPM)

\[
\begin{align*}
\text{minimize} & \quad f(x) \quad \text{subject to} \quad c(x) = 0 \quad \& \quad x \geq 0 \\
\text{Related to barrier methods for handling inequalities} & \\
\begin{cases}
\text{minimize} & \quad f(x) - \mu \sum \log(x_i) \\
\text{subject to} & \quad c(x) = 0
\end{cases}
\end{align*}
\]

\[
\text{minimize} \quad x_1^2 + x_2^2 \quad \text{subject to} \quad x_1 + x_2^2 \geq 1
\]
Interior Point Methods (IPM)

\[
\begin{align*}
\text{minimize} \quad & f(x) \quad \text{subject to} \quad c(x) = 0 \quad \& \quad x \geq 0 \\
\text{Related to barrier methods for handling inequalities} \\
\begin{cases}
\text{minimize} \quad & f(x) - \mu \sum \log(x_i) \\
\text{subject to} \quad & c(x) = 0
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{minimize} \quad & x_1^2 + x_2^2 \quad \text{subject to} \quad x_1 + x_2^2 \geq 1
\end{align*}
\]
BACK TO MPECs
Convergence of Interior Point Methods

Key idea: MPEC-stationarity $\iff 1^{st}$ order conditions of NLP

Approaches:
Convergence of Interior Point Methods

Key idea: MPEC-stationarity ⇔ 1st order conditions of NLP

Approaches:

1. Penalize equilibrium minimize $f(x) + \pi x_1^T x_2$
 - Well behaved smooth problem: constraints satisfy MFCQ
 - $\pi^* < \infty$ and $X_1 x_2 \leq 0 \Rightarrow$ strongly-stationary
 - How to adjust π? ... during barrier solve!
Key idea: MPEC-stationarity \iff 1st order conditions of NLP

Approaches:

1. Penalize equilibrium minimize $f(x) + \pi x_1^T x_2$
 - Well behaved smooth problem: constraints satisfy MFCQ
 - $\pi^* < \infty$ and $X_1 x_2 \leq 0 \Rightarrow$ strongly-stationary
 - How to adjust π? ... during barrier solve!

2. Relax equilibrium $X_1 x_2 \leq \tau$ & $x_1, x_2 \geq -\delta$
 - Well behaved smooth problem
 - Adjust $\tau_i \downarrow 0$ or $\delta_i \downarrow 0$... not both
Convergence of Interior Point Methods

Key idea: MPEC-stationarity $\iff 1^{st}$ order conditions of NLP

Approaches:

1. **Penalize equilibrium** minimize $f(x) + \pi x_1^T x_2$
 - Well behaved smooth problem: constraints satisfy MFCQ
 - $\pi^* < \infty$ and $X_1 x_2 \leq 0 \Rightarrow$ strongly-stationary
 - How to adjust π? ... during barrier solve!

2. **Relax equilibrium** $X_1 x_2 \leq \tau$ & $x_1, x_2 \geq -\delta$
 - Well behaved smooth problem
 - Adjust $\tau_i \downarrow 0$ or $\delta_i \downarrow 0$... not both

Aim: NLP solver with small modification works for MPECs
Interior Point Method with Two Sided Relaxation

- MPECs have no strict interior
- Relaxation $X_1x_2 \leq \tau \downarrow 0 \Rightarrow \text{interior} \rightarrow 0$

$\Rightarrow \text{relax } X_1x_2 \leq \tau$
and $x_1 \geq -\delta, x_2 \geq -\delta$
... adjust τ, δ as $\mu \rightarrow 0$

\textbf{Theorem}: In limit $\tau_i \rightarrow 0$ or $\delta_i \rightarrow 0$ but not both
\Rightarrow relaxed problem has \textit{non-empty} interior in limit

MPEC multiplier $\mu_i < 0 \Rightarrow$ reduce $\tau_i \downarrow 0$...
Limitations of NLP Approach

- formulation of followers as NCP
 ⇒ questionable for nonconvex games
- MPEC-stationarity not necessarily no descent
- multipliers $\xi \to \infty$... not a solution???

... NLP approach remains most versatile MPEC solver
... allows simulation of heterogeneous leader-follower games
MULTI-LEADER-FOLLOWER GAMES
Multi-Leader-Follower Games

Non-cooperative equilibrium between > 2 dominant producers

\[
x_i^*, y \in \arg\min_{x_i \geq 0, y} f_i(x, y)
\text{s.t.} \quad h(x_i, y) = 0 \quad 0 \leq y_1 \perp y_2 \geq 0
\]

Complementarity: optimality conditions of leaders
⇒ equilibrium problem with equilibrium constrains (EPEC)

Leaders’ MPECs violate Mangasarian-Fromowitz CQ
... are EPECs harder than MPECs ???

... recall MPEC strong-stationarity ⇒ ∃ bounded multipliers
Initial experience: no feasible solution to MLF game

Equilibrium may not exist:

\[
\begin{cases}
\text{minimize} & \begin{pmatrix}
\frac{1}{2}x_1 + z \\
-\frac{1}{2}x_2 + z
\end{pmatrix} \\
\text{subject to} & z - 1 + x_1 - x_2 - \lambda = 0 \\
& 0 \leq z \perp \lambda \geq 0
\end{cases}
\]

\[\Rightarrow z(x_1, x_2) = \max(0, 1 - x_1 - x_2)\]
A Practical Nonlinear Approach to EPECs

Initial experience: no feasible solution to MLF game

Equilibrium may not exist:

\[
\begin{align*}
\text{minimize} & \quad \left(\begin{array}{c}
\frac{1}{2}x_1 + z \\
-\frac{1}{2}x_2 + z
\end{array} \right) \\
\text{subject to} & \quad z - 1 + x_1 - x_2 - \lambda = 0 \\
& \quad 0 \leq z \perp \lambda \geq 0
\end{align*}
\]

\[\Rightarrow z(x_1, x_2) = \max(0, 1 - x_1 - x_2)\]

... suggest convexification approach to get feasible ...
Gauss-Seidel Iteration for EPECs

set I := 1..2;

var x{I}; # ... leader variables
var s; # ... follower variables
var y;

... leader’s objective
minimize leader{i in I}: (x[i]+1)^2;

subject to
 compl: 0 <= s complements y >= 0;
Gauss-Seidel Iteration for EPECs

\[
\begin{align*}
\text{param } x0\{I\} & \text{ default } 0; \quad \# \text{ iter } k \\
\text{param } s0\{I\} & \text{ default } 0; \\
\text{param } y0\{I\} & \text{ default } 0; \\
\text{param } x1\{I\}; \text{ param } s1\{I\}; \text{ param } y1\{I\}; \quad \# \text{ iter } k+1 \\
\text{param } Tol & \geq 0, \text{ default } 1E-4; \quad \# \text{ tolerance} \\
\text{param } MaxIt & \geq 0, \text{ integer, default } 20; \quad \# \text{ max iter} \\
\text{param } Err & \text{ default } 0; \\
\text{let} \{i \in I\} x[i] & := x0[i]; \quad \# \text{ init vars} \\
\text{let } s & := s0[1]; \text{ let } y & := y0[1]; \\
\text{problem Stackelberg}\{i \in I\}: \quad \# \text{ leader } i \\
\quad \text{leader}[i], \quad \# \text{ objective} \\
\quad x[i], y, s, \quad \# \text{ variables} \\
\quad \text{slack, compl}; \quad \# \text{ constraints}
\end{align*}
\]
Gauss-Seidel Iteration for EPECs

for {k in 1..MaxIt} {
 for {i in I} {
 solve Stackelberg[i];
 let x1[i] := x[i];
 let s1[i] := s;
 let y1[i] := y;
 };

 let Err := sqrt(sum{i in I}((x0[i] - x1[i])^2
 + (y0[i] - y1[i])^2
 + (s0[i] - s1[i])^2));

 if (Err <= Tol) then break;

 let{i in I} x0[i] := x1[i];
 let{i in I} s0[i] := s1[i];
 let{i in I} y0[i] := y1[i];
};
Complementarity System Approach

Non-cooperative Nash equilibrium between leaders
\((\nabla_i = \nabla_{(x_i, y_i)})\) ... for all leaders \(i = 1, \ldots, L\):

\[
\nabla_i f_i(x, y) - \nabla_i h(x_i, y)\mu_i - \begin{pmatrix}
\sigma_i \\
0 \\
\nu_{i1} - \xi_i y_2 \\
\nu_{i2} - \xi_i y_1 \\
h(x_i, y)
\end{pmatrix} = 0
\]

\[
0 \leq x_i \perp \sigma_i \geq 0 , \quad 0 \geq y_1^T y_2 \perp \xi_i \geq 0 \\
0 \leq y_1 \perp \nu_{i1} \geq 0 , \quad 0 \leq y_2 \perp \nu_{i2} \geq 0
\]

Non-square complementarity problem
... OK for nonlinear optimizers
... note each leader has own multipliers \(\xi_i, \nu_i\)
... price-consistent formulation \(\xi_i = \xi \; \forall i \Rightarrow\) square NCP
Complementarity System Approach

var lambda{I}; var sigma{I}; # ... multipliers
var nu{I}; var xi{I};

subject to
 KKTx{i in I}: 2*(x[i]+1) + lambda[i] = 0;
 KKTy{i in I}: lambda[i] - nu[i] + xi[i]*s = 0;
 KKTs{i in I}: - lambda[i] - sigma[i] + xi[i]*y = 0;

slack{i in I}: s = x[1]+x[2]+y complements lambda[i];

bnds{i in I}: 0 <= s complements sigma[i] >= 0;
 bndy{i in I}: 0 <= y complements nu[i] >= 0;
 compl{i in I}: 0 <= -y*s complements xi[i] >= 0;
Solution of Multi-Leader Follower Games

- MPECs are nonconvex
 ⇒ first-order conditions are not sufficient
 ⇒ NCP approach may fail
- Differentiation is not easy
 ⇒ mistakes in NCP formulation
- MPECs are already difficult
 ⇒ Gauss-Seidel often fails
- penalized approach works best at present
CONCLUSIONS
Conclusions

- complex leader follower games are MPECs/EPECs
- numerical treatment of large problems possible

⇒ can simulate complex games numerically
Conclusion & Outlook

Conclusions

• complex leader follower games are MPECs/EPECs
• numerical treatment of large problems possible

⇒ can simulate complex games numerically

Open Questions

• Interpretation of NLP failures?
• Can we avoid “spurious-stationary” points?
• How to get global minimizers for some applications?
“Homework”

1. Formulate hakonsen.mod as an NLP; replacing $0 \leq x_1 \perp x_2 \geq 0$ by
 - 1.1 $\min(x_1, x_2) \leq 0$ and $x_1, x_2 \geq 0$
 - 1.2 $x_1^T x_2 \leq 0$ and $x_1, x_2 \geq 0$
 ... and solve the model using snopt, loqo et al.

2. Solve wardop.mod/wardrop-01.dat:
 - 2.1 starting from default
 - 2.2 starting from point given in wardrop-01.start

 What is the effect on the solvers? Compare IPM to ASM!

Models: www.mcs.anl.gov/~leyffer/ice05/