Continuous Optimization with AMPL

Todd Munson

Mathematics and Computer Science Division
Argonne National Laboratory

Outline '

Continuous Optimization
Numerical Methods
Modeling Languages
Beginning AMPL

Conclusion

Continuous Optimization'

Minimize or maximize function subject to constraints

min f(x)
subject to c(x) <0
h(x) =0

Functions are nonlinear but sufficiently smooth
Includes both inequality and equality constraints
Potentially large number of variables and constraints

Restrict ourselves to finding local solutions

Economic Applications I

Portfolio Optimization
Principal-Agent Problems
Maximum Likelihood Estimation

Optimal Growth and Life-Cycle Problems

Social Planning Problems

Numerical Methods '

e Several ‘“standard” techniques exist
— Augmented Lagrangian methods
— Interior-point methods

— Sequential quadratic programming

e Many variations on these themes
— Choice of merit function or filter
— Line search or trust region
— Dealing with infeasibility
— Linear algebra employed

— Derivative requirements

e Best algorithm and settings are problem dependent
— Number of variables and constraints

— Amount of nonlinearity in problem

Local Sequential Quadratic Programming Method'
ﬁ Compute direction by solving \

min sd"Hpd + V f(z*)"d
subject to Ve(zF)d + c(z*) <0
Vh(z*)d + h(z*) =0

d—l—meO

2. Update iterate
ghtl — gk + d

Q Repeat until convergence J

Issues to Address'

Efficiently solving the subproblems
— Warm starts

— Rank deficiency and degeneracy

Dealing with infeasible subproblems
— Elastic mode

— Feasibility restoration
Handling unbounded subproblems

Computing the Hessian of Lagrangian Hy
— Possibly an indefinite matrix

— Positive definite approximation

Obtaining global convergence
— Merit function or filter

— Line search or trust region

General-Purpose Algorithms on NEOSI

Augmented Lagrangian Methods

— LANCELOT - trust region

— MINOS — linearly constrained Lagrangian
— PENNON — generalized Lagrangian

Interior-Point Methods

— IPOPT - filter line search
— KNITRO — trust region

— LOQO — line search

Sequential Quadratic Programming Methods
— FILTER — filter
— SNOPT — line search

Other Techniques
— CONOPT — generalized reduced gradient

8

Traditional Method with Libraries'

Download and compile code or obtain libraries
Read documentation to learn function calls

Write application code

— Construct sparsity pattern

— Compute derivative information
— Call optimization routines

— Verify correctness
Compile, link, and execute code
Fix bugs — could take days to months

Find out algorithm not appropriate for application
— Start over with different library
— Function calls not standardized

— Some code can be reused

The KNITRO Interface

int KTR_solve(KTR_context *kc,

double *f, /* (scalar) Objective function value */
int ftype, /* (scalar) Type of objective */
int n, /* (scalar) The number of unknowns */
double *x, /* (length n, vector) Unknown values */
double *bl, /* (length n, vector) Lower bounds */
double *bu, /* (length n, vector) Upper bounds */
double *fgrad, /* (length n, vector) Obj. gradient */
int m, /* (scalar) The number of constraints */
double *c, /* (length m, vector) Constraint values */
double *cl, /* (length m, vector) Lower bounds */
double *cu, /* (length m, vector) Upper bounds */
int *ctype, /* (length m, vector) Constraint type */
int nnzj, /* (scalar) Number of nonzeros in Jacobian */
double *cjac, /* (length nnzj, vector) Jacobian data */
int *indvar, /* (length nnzj) column start index */
int *indfun, /* (length nnzj) row index */

double *lambda, /* (length m+n, vector) Multiplier estimates */

int nnzh, /* (scalar) Number of nonzeros in Hessian */
double *hess, /* (length nnzh, vector) Hessian data */
int *hrow, /* (length nnzh) row index */
int *hcol, /* (length nnzh) column index */
double *vector, /* (length n) vector for Hessian products */
void *user /* pointer for callback functions */

10

Modeling Languages: A Better Way'

e Portable language for specifying problems
— Based on algebraic description
— Large models can be processed
— Easy to modify code as needed

— Include programming language features

e Able to switch algorithms at will
— No need to compile codes
— Interfaces written by developers
— Derivatives automatically calculated

— Algorithm specific options can be set

e Support for other facilities
— Relational databases and spreadsheets

— MATLAB interface to obtain function evaluations

11

Notes on Modeling Languages'

— Excellent documentation

e Pros

— Easy to use with convenient syntax
— Many solvers are available

— Automatic differentiation

— Separation of model and data

— Large user communities

e Cons

— Interpreted languages

* May be slow for some applications

* Can consume large amount of memory

— Not easily extensible to new paradigms (SDP)

12

AMPL Overview: Model Declaration'

e Set declarations
— Unordered, ordered, and circular sets
— Cross products and point to set mappings

— Set manipulation operations

e Parameters and variables
— Attributes
— Check statements

— Defined variables

e Objectives and constraints
— Equality, inequality, and range constraints
— Complementarity constraints

— Multiple objectives

e Problem statement

13

AMPL Overview: Data and Commands'

e Data Declaration

— Set definitions

* Explicit list of elements
* Implicit list in parameter statements

— Parameter definitions

% Tables and transposed tables

* Higher dimensional parameters

e Execution Commands
— Load model and data
— Select problem, algorithm, and options
— Solve the instance

— QOutput results

14

AMPL Overview: Other Operations'

Let and fix statements
Conditionals and loop constructs
Execution of external programs

Access to relational databases

15

Social Planning for Endowment Economy'

e Economy with n agents and m commodities

— e € R*"X™ are the endowments

— o, B € R™"X™ are the utility parameters

— A € R™ are the social weights

e Social planning problem

max
x>0,u

subject to

1=1
n n
E Tik < E €.k
1=1 =1
n 1—03;
(1 + @)t Pk

1 — Bk

16

Vk =1,...

Vi=1,...

s TN

s 1

Model Definition: sociall .mod'

param n > O, integer; # Agents
param m > O, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights
param alpha {1..n, 1..m} > 0; # Utility parameters
param beta {1..n, 1..m} > 0;

var x {1..n, 1..m} >= 0; # Consumption
var u {i in 1..n} = # Utility
sum {k in 1..m} alphali,k] * (1 + x[i,k])"(1 - betali,k]) / (1 - betali,k]);

maximize welfare:
sum {i in 1..n} lambdali] * ul[i];

subject to

consumption {k in 1..m}:
sum {i in 1..n} x[i,k] <= sum {i in 1..n} el[i,k];

17

Data Definition: sociall .dat'

param n := 3; # Agents
param m := 4; # Commodities

param alpha : 1 2 3 4 :=
1 1 1 1 1
2 1 2 3 4
3 2 1 1 5;
param beta (tr) : 1 2 3 :=
1 2 0.6
2 3 0.7
3 2 2.0
4 2 2.5;

param : lambda :

1 1
2 1
3 1;

18

Execution Commands: sociall. cmd'

Load model and data
model sociall.mod;
data sociall.dat;

Specify solver and options
option solver "minos";

option minos_options "outlev=1";

Solve the instance

solve;
Output results

display x;
printf {i in 1..n} "%2d: % 5.4e\n", i, ulil;

19

Output from AMPL

ampl: include sociall.cmd;

MINOS 5.5: outlev=1

MINOS 5.5: optimal solution found.
25 iterations, objective 2.252422003
Nonlin evals: obj = 44, grad = 43.

X =

11 0.0811471
12 0.574164
1 3 0.703454
14 0.267241
21 0.060263
2 2 0.604858
23 1.7239
24 1.47516
31 2.85859
32 1.82098
3 3 0.572645
3 4 1.2576

-

1: -5.2111e+00
2: -4.0488e+00
3: 1.1512e+01
ampl: quit;

20

Model Definition: socialQ.mod'

set AGENTS; # Agents
set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0O, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights
param alpha {AGENTS, COMMODITIES} > O; # Utility parameters
param beta {AGENTS, COMMODITIES} > O;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - betali,k];

var x {AGENTS, COMMODITIES} >= 0; # Consumption

var u {i in AGENTS} = # Utility

sum {k in COMMODITIES} alphali,k] * (1 + x[i,k]) gammali,k] / gammal[i,k];

maximize welfare:
sum {i in AGENTS} lambdal[i] * ul[il];

subject to
consumption {k in COMMODITIES}:
sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} el[i,k];

21

Data Definition: socialQ.dat'

set COMMODITIES := Books, Cars, Food, Pens;

param: AGENTS : lambda :=

Jorge 1
Sven 1
Todd 1;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1
Sven 1 2 3 4
Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6
Cars 1.6 3 0.7
Food 1.7 2 2.0
Pens 1.8 2 2.5;

22

Execution Commands: social.cmd'

Load model and data
model social2.mod;
data social2.dat;

Specify solver and options
option solver "minos";

option minos_options "outlev=1";

Solve the instance

solve;
Output results

display x;
printf {i in AGENTS} "%5s: % 5.4e\n", i, ulil;

23

Output from AMPL

ampl: include social.cmd;

MINOS 5.5: outlev=1

MINOS 5.5: optimal solution found.
25 iterations, objective 2.252422003
Nonlin evals: obj = 44, grad = 43.

X =

Jorge Books 0.0811471
Jorge Cars 0.574164
Jorge Food 0.703454
Jorge Pens 0.267241
Sven Books 0.060263
Sven Cars 0.604858
Sven Food 1.7239
Sven Pens 1.47516
Todd Books 2.85859
Todd Cars 1.82098
Todd Food 0.572645
Todd Pens 1.2576

s

Jorge: -5.2111e+00
Sven: -4.0488e+00
Todd: 1.1512e+01

ampl: quit;

24

Traffic Routing with Congestion'

e Route commodities through network
— N denotes the nodes and A C N x N the arcs
— K denotes the commodities
— o, 3 are the congestion parameters

— b denotes the supply and demand

e Multicommodity network flow problem

mzrf)l,i;lzo Z i jfig + Bijfi;
(7,J)€A

subject to Z Ti .k < Z Tjik T bf,;,k Vi € N, keI
(2,j)€EA (7,0)eA
Jig = Z Ti, 5,k V(i,j) €A

ke

25

Model Definition: network.mod'

set NODES; # Nodes in network

set ARCS within NODES cross NODES; # Arcs in network

set COMMODITIES := 1..3; # Commodities

param b {NODES, COMMODITIES} default O; # Supply/demand

check {k in COMMODITIES}: # Supply exceeds demand

sum{i in NODES} bl[i,k] >= 0;

param alpha {ARCS} >= 0; # Linear part
param beta {ARCS} >= 0; # Nonlinear part
var x {ARCS, COMMODITIES} >= 0; # Flow on arcs
var f {(i,j) in ARCS} = # Total flow

sum {k in COMMODITIES} x[i,j,k];

minimize time:
sum {(i,j) in ARCS} (alphali,jl*f[i,j] + betali,jl*f[i,jl"~4);

subject to
conserve {i in NODES, k in COMMODITIES}:
sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

26

Data Definition: network.dat'

set NODES := 1 2 3 4 5;

param: ARCS : alpha beta =

12 1 0.5

13 1 0.4

2 3 2 0.7

2 4 3 0.1

3 2 1 0.0

3 4 4 0.5

4 1 5 0.0

4 5 2 0.1

5 2 0 1.0;
let b[1,1] := 7; # Node 1, Commodity 1 supply
let b[4,1] := -7; # Node 4, Commodity 1 demand
let b[2,2] := 3; # Node 2, Commodity 2 supply
let b[5,2] := -3; # Node 5, Commodity 2 demand
let b[3,3] := 5; # Node 1, Commodity 3 supply
let b[1,3] := -5; # Node 4, Commodity 3 demand

fix {i in NODES, k in COMMODITIES: (i,i) in ARCS} x[i,i,k] := 0;

27

Execution Commands: network. cmd'

Load model and data
model network.mod;

data network.dat;

Specify solver and options
option solver "minos";

option minos_options "outlev=1";

Solve the instance

solve;

Output results

for {k in COMMODITIES} {
printf "Commodity: %d\n", k > network.out;
printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;
printf "\n" > network.out;

}

28

Commodity: 1

1.2 =
1.3 =
2.4 =
3.2 =
3.4 =

3.3775e+00
3.6225e+00
6.4649e+00
3.0874e+00
5.3510e-01

Commodity: 2

2.4
4.5

3.0000e+00
3.0000e+00

Commodity: 3

3.4 =
4.1 =

5.0000e+00
5.0000e+00

Output File: network.out'

29

Accessing Other Solvers: Kestrel Client'

Load model and data
model network.mod;
data network.dat;

Specify solver and options
option solver "kestrel";
option kestrel_options "solver=knitro";

option knitro_options "outlev=1";

Solve the instance

solve;

Output results

for {k in COMMODITIES} {
printf "Commodity: %d\n", k > network.out;
printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;
printf "\n" > network.out;

}

30

Job has been submitted to Kestrel
Kestrel/NEOS Job number : 579001
Kestrel/NEOS Job password

: XDdwVLQU

Edited Output from AMPL

Check the following URL for progress report

http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi?job=579001&pass=XDdwVLQU

In case of problems, e-mail :

neos-comments@mcs.anl.gov

Intermediate Solver Output:
KNITRO 4.0: 12/15/04

KNITRO 4.0.4

Ziena Optimization, Inc.

website: www.ziena.com
email: info@ziena.com

Iter Objective Feas err
0 3.131973e+02 7.000e+00
10 1.467524e+03 4.710e-02
15 1.505526e+03 2.019e-07

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

6.322e+00
2.844e-05

| IStepl | CG its
4.704e-01 0
8.428e-04 0

31

Conclusion I

e Optimization problems are prevalent

e Algorithms for solving them are mature

— Commercially available

— Usable through NEOS

e Modeling languages good for expressing problems
— Based on algebraic description
— Large models can be processed

— Many features

32

