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Motivation

Many economic models (may) have multiple equilibria

Equilibrium conditions are often nonlinear systems of equations

Algorithms for findingall solutions to polynomial systems exist
— Economics: GAMBIT ?
— Groebner Bases
— Resultants, Multiresultants

—Homotopy Methods

What, if anything, works for interesting economic models?




Solving Interesting Systems

Homotopy Methods: long history of applications in economics
Currently the only methods working for models of moderate size

Application of these methods requires work

Application in this paper:

Discrete-time stochastic games with a finite number of states

—Wide range of applications
— Active area of computational economics
— Examples of equilibrium multiplicity

— Polynomial equilibrium equations




Overview of this Talk

e Polynomial Systems of Equations
e Homotopy Method in Complex Space

e Structural Properties

e Static Game: Bertrand Price Competition
e Dynamic Game: Patent Race

e Dynamic Game: Learning Curve




Polynomial Systems of Equations

Complex polynomial systeny.(z) = 0
z=(z21,20,...,2,) €C", f:C" = C"

Equation:
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diji € Np: degree of théth variable in thejth term of equatiorn

.....

Total degree of': d =[], d,




Number of Solutions

Bezout’s TheoremPolynomial systenf(z) = 0 has at most isolated solutions

“Generic” polynomial systems have exacilylistinct isolated solutions

(Garcia and Li (1980))

Example:
f1<21722> — 2122_21—224—1 — ()

f2(21,22> — (21)222 — 2’1(2’2)2 +1 =0

di=2,dy,=3,50d=2%x3=6




Homotopy Approach

Construct “easy” polynomial systeniz) = 0
gi(2) = ¢;(z)% — b; for by, c; € C — {0}
g:(z) = 0 has d; isolated solutions

g(z) =0 hasd =]]._, d; isolated solutions

Homotopy function

H(z,t)=(1—1t)g(z)+tf(z) with t € [0,1)

<
=
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(z) = 0 has d known isolated solutions

H(z,1) = f(z) =0 is system of interest




Theorem for Homotopy Approach

Morgan (1986):

For almost all parametetsc C" andc € C", the following properties hold.

1. The preimagédi —!(0) consists ofl smooth paths.

2. Each path either diverges to infinity or converges to a solution
of f(z) = 0 ast approaches 1.

3. Each isolated solution of(z) = 0 has a path converging to it.

4. Paths are monotonically increasingtifCauchy-Riemann equations).




Example revisited

f1(21,22> = 2122—21—22+1 =

f2<Z1, ZQ) — (Z1>222 — Z1<ZQ>2 +1 =20

d = 6, SO 6 paths must be tracked

Two real and two complex solutions

(1,%(&\/5)) and (%(1iz'\/§),1>

Two paths diverge to infinity




Diverging Paths

Sequence of pointg?®, t*), s = 1,2, ..., on a diverging path
t* — 1and so||z°|| — oo
Sequence?/||z?|| has a limit pointz # 0

B8 (= 0g(=) - (=) o
0= - - fi
EE BE i)

fY(2) is the homogeneous part ¢f the terms off; with maximal degreé;

zwith f(z) = 0 andz; = 1 for somei: “solution at infinity”




Example cont'd

fl(ZhZQ) = 2129—21—2+1 =10

foz1, 20) = (21)°20 — 21(22)* +1 = 0
Homogeneous part

fl(ZhZQ) — Z1%9 =2

fo(21,29) = (21)%22 — 21(22)* = 0

Two solutions at infinity: (1,0) and (0,1)

Real solutions, complex solutions, solutions at infinity
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Two Difficulties

Homotopy approach is very intuitive, but has significant drawbacks

1. Number of finite solutions is usually much smaller than Bezout nuniber

— Bezout number grows exponentially in the number of nonlinear equations
— Most paths diverge

2. Paths diverging to infinity are a nuisance

— Of no economic interest

— Large computational effort

— Require decision to truncate

— Risk of truncating very long but converging path
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Homogenization

Homogenizatiorfi(zo, 21, ..., 2y) Of the polynomialf;(z4, . . ., z,) of degree,
3 _ g AL “n
fz(z(): Rly oo ZTL) - Z() fz(zoa c ey ZO)'

Transformed systenfi(z) = 0 wherez = (z, 21, . . . , 2»)

n equations im + 1 unknowns

Example cont'd: homogenized system

AN

f1(z0, 21, 22) = 2120 — 2021 — 2022 + (20)* = 0

A

fQ(Z()) 214 22) — (Z1>222 — Z1(22>2 + (20)3 =0
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Solutions of Homogenized System

If /() =0thenf(cz)=0forallceC

Solutions are complex lines through the origirdi'!

Relationship between solutions of

f(z)=0,zeC" and f(3)=0,2eC" 2 #£0

If f(z) =0thenforz = (1,2), f(2) =

AN

If £(2) =0 forsomes = (zy, 2) th enf( L) =

720
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Solutions at Infinity

If zo =0, so thatz = (0, z), then

ﬁ(é) = f2(z1,...,2,), the homogeneous part ¢f (only terms of degre€,)
Solutions|z] with z, = 0 of f(2) = 0 are the solutions at infinity !

Example cont’'d: homogenized system
fl(ZO; 21,29) = 2129 — 2021 — 2022 + (20)2 = 0

fQ(ZO, <1, ZQ) — (21)222 — ZI(Z2)2 + <Z0>3 = (

f?(zlsz) = Z1%9 =0

f3(21,20) = (21222 — 21(z)? = 0
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Projective Transformation

Define a new linear function, coefficierise C \ {0}

U<ZO7 Rly v Zn) — 5020 T 5121 Tt gnzn

Projective transformatiof’( 2y, 21, . . ., z,) Of the polynomialf(z, ..., z,) IS
Folzo, 21,y 2n) = w20, 215 -y 2p) — 1
E(zo,zl,...,zn):fi(zo,zl,...,zn), i=1,...,n

F(z) =0, system of» + 1 equations im + 1 variables

Same degreé as the polynomiaf(z)
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No Diverging Paths

Theorem [Morgan, 1986]

If the system/ (%) = 0 has only a finite number of solutions {P", then
for almost allé € C” the systen¥’(z) = 0 has exactly/ solutions

(counting multiplicities) inC"™! and sono solutions at infinity

Now use original homotopy on new systdr
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Reduction in the Number of Paths

ldea: exploit special structure of polynomial system to eliminate extraneous paths

m-homogeneity: generalization of homogenizatiory ¢f)
Partition the set of variables, . . ., z, Into m subsets

Homogenizef(z) with respect to the variables in each subset

m-homogeneous Bezout Theorem: number of isolated solutions is atBnast

Start system with sam@-homogeneous structure: fewer paths
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Summary

Homotopy methods for finding all solutions of systems of polynomial equations

Smooth paths, parameteincreases along each path

|solated solutions, diverging paths
Projective transformation: compactification of paths
Can reduce number of paths by initial analysishomogeneity

Lots of other improvements possible, active field of research
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Polynomial Systems of Equations

Algorithms for finding all solutions
Drexler (1977), Garcia and Zangwill (1979), Morgan (1986),

Morgan and Sommese (1987), Verschelde and Cools (1993), Morgan et al. (1995),
Sturmfels (2002)

Publicly available software (among others)

POLSYSPLP (Wise et al. (2000)) based on HOMPACK90 (Watson et al. (1997))
PHCpack (Verschelde (1997)) written in Ada

Feasible to solve problems of moderate size
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Bertrand Price Competition

Two firmsx andy producing goods andy, resp., priceg,, p,

Three types of customers with demand functions:

Drl=A-p,, Dyl=0; Dx3=0, Dy3=A-—p,
e -0
Dx2=np,” (p; " +p, "), Dy2=np," (p,"" +p, )"
Total DemandDz = Dx1 + Dx2 + Dx3

Unit costm, thus profitR, = (p, — m)
Necessary optimality conditio®W/ i, = M R, = 0

20



First-Order Conditions

c=3;v=2,n=2700;, m=1; A=50
First-order conditions for the two firms

2700 8100 2700
MR, = 50 —p,+ (ps —1) | =1+ —

_I_
P > .
P8 (p2% + ;%) pi\/px2+py2 pi\/px2+py2

2700 8100 2700
MR, =50 —p, + (p,— 1) | =1+

v5 (pz* +p,?) py\/p +p,” py\/p;2+p52

Polynomial equations ?
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Polynomial System

DefineZ = \/pgg2 + p,#, Which yields a polynomial equation

0=—p; —p, + Z°pp,

SubstituteZ into denominator of\/ R, andM R,

0 = —2700 + 2700p, + 8100Z%p? — 5400Z°p> + 512°p° — 22°p!

0 = —2700 + 2700p, + 8100Z°p; — 5400Z°p;, + 512°p;, — 22",

Bezout numbed =6 - 10 - 10 = 600
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Solutions

POLSYSPLP:3-homogeneous Bezout numhgr= 182 < d = 600

Total of 18 real solutions, 9 with negative valu8gositive real solutions

Running time less than 12 sec

Pz

Py

1.75653
8.07580
22.98653

1.75653
8.07580
) 22.98653

2.03619
5.63058

5.63058
2.03619

2.16820
25.1568(0

25.1568C
) 2.16820

7.69768
24.25903

24.25903
 7.69768

)
)
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Global Optimality

Second-order conditions eliminate 5 positive real solutions

Pz Py
1.75653 1.75653

22.98653 22.98653
2.16820 25.15680
25.15680 2.16820

Global optimality: Isp,, = 1.75653 globally optimal giverp, = 1.75653 ?
Another system of polynomial equations

0 = 0.32410568484991703p% + 1 — Z2p2

0 = —2700 + 2700p, + 8100Z%p> — 5400Z°p> + 512°p° — 22°p!
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Equilibria
POLSYSPLP:2-homogeneous Bezout numhgr= 20 < d = 40

Total of 14 finite solutions, 8 complex, 6 real solutiors1.5 sec)

Solutionp, = 25.2234 leads to higher profit tham, = 1.75653
Thus,(p., p,) = (1.75653, 1.75653) not an equilibrium

Two asymmetric equilibria

Pz Py
2.16820 25.15680

25.15680 2.16820
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Patent Race between Two Firms

N innovation stages
Firms start race at stage

Periodt innovation stages(z; 4, x2,) Wherez,, € X ={0,...,N},i=1,2

Periodt investmenta,;; € A= [0, A] CR,,i=1,2

Cost of investmentC;(a) = c,a”, n € N, ¢; >0, i = 1,2

Independent and stochastic innovation technologies
Transition from period to period:; ;11 = ;; O T; 441 = x; 1 + 1

Markov process (depends on investment levels)
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Transition from State to State

Firm i's state evolves according to

Tit, with probability p(z; |a; s, i)
Lit+1 = . -
" ziy + 1, with probability p(z;; + 1]a;, xiy)

Distribution over next period’s states (polynomial specification!)
p(zla,x) = F(z|r)a

plx + 1la,x) = 1 — F(z|r)a

F(x|x) € (0,1) is probability that there is no change in state i 1

27



Firms’ Optimization Problem

First firm to reach stat&/ wins the race and receives pri2e

Ties are broken by flip of a coin
Firms discount future costs and revenues at commornorate

Firms’ objective: maximize expected discounted payoffs
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Equilibrium |

Restriction to pure Markov strategies
Firm i's strategyo;(-) : X x X — A
Expected discounted payoifi(-) : X x X — R

Bellmann equation for;, z_;, < N,

2

Vi(zi, x-i) = Imax 4 —Ci(a;) + Z p(xilai, xi)p(ali|a—, z-;)Vi(

! .7
ZCZ»,ZU_Z»

\

/ /

iy L_;

)
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Equilibrium 1

Boundary condition at terminal states

(Q, foraz_;<z;=N
Vilw, ) = ¢ Q/2, forz;=2;=N
. 0, forz;<x_ ;=N

Optimal strategies satisfy

y

a;€A

oi(wi, a_;) = argmax § —Ci(a;) + 8 Y plafla;, z)p(a’ |a_y, ) Vi(a], 2’ )

LUZ-,.CU_Z-

\

\

/
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Our Equilibrium Equations

0 = —Vi(wia) — cal + 8> plafag, x)p(a’la_s, x_)Vi(x}, 2" )

ZUZ-,.I'_Z-

_ 0
0 = —nciaf 1+5 Z a@p(%’ai;xi)Z?(xl_Aa—z‘ax—i)vi@fgaﬂf/_i)

Parameter specification:= 2, F(z1,z9) = F

Unknowns: Vi(x1, x3), Va(x1, 22), a1(x1, T2), as(x1, T2)

Four equations per stage;, x_;)

Upwind Gauss-Seidel: instead of solving all equations simultaneously

solve each stage game separately
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Polynomial Equilibrium Equations

Equations for firm 1:
0 = aj(—c1) + a1Vias(BF?) + a,Vi(—BF)
+ a1a2 (5F2(V(11) — Vo) — ‘/(10))) + a1(BF Vi)
+Vias(=BF) + Vi(B8 — 1) + ax(BF V(o))
0 = a1(—2¢1) + Vias(BF?) + Vi(—BF)
+ a2 (BF* (Vi) = Vioy = Vi) + (BF Vo))

Total degree3 x 2 x 3 x 2 =36

Linearity in Vi, V5 allows reduction in number of equations and Bezout number
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Solutions

N = 3 stages0), 1,2, prize{2 = 10
F = i cost coefficients; = ¢ = 1, discount factos = 0.96
Real and complex finite solutions

(0,0), (1,0), (1,1) 3real, 4 complex
(2,1) 2 real, 4 complex
(2,0) 6 real, 0 complex
(2,2) 3 real, 4 complex

36 paths followed in less than 3 seconds
Only one economically meaningful solution: unique equilibrium

Other real solutions lead to negative transition probabilities
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Unique Equilibrium

a; Vi

as Vo

1.373 2.697
0.939 6.725
0.567 7.653
0.904 1.911
0.755 4.776
0.673 1.419

1.373 2.697
0.317 0.205
0.035 0.004
0.904 1.911
0.275 0.192
0.673 1.419
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Learning Curve Game

Game with static and dynamic component
Firms play Cournot game in each period

Learning: output may lead to lower unit cost of production

Two goods and two firms, cost functief{q;, x;) = z;q;, i = 1,2
State is unit cost; € X = {1, &, ..., &n}, absorbing statéy
Transition probabilities depend on output (polynomial specification)
Pr[xz',tJrl = fj+1|33z‘,t = fj] = F(lez',t>%'
Prizisi = &lzie =¢8] = 1= F(i)g

Absorbing statéy: F({n) =0

35



Parametrization

Profit function of firmi, I1;(q1, g2, ;) = Pi(q1, ¢2) ¢ — x; ¢
Price functionP;(¢:, ¢2) = a%u(ql, )

4/3
u(qi, q2) = 4 (Qi/Q + Q§/2) +M

Parameter values: unit coste {2,1,1}, F(x;) = 0.001 for z; > 1
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Polynomial Equations

For eliminating rational exponents and clearing of denominators

0=Qi—q, 0=0Q5—q@, 0=0°-Q;—Q

Bellman equation for firm 1

0 = 4QQ: — (1 —B)Vi + (F1W'hio — z1)q1 — BFig Vi — B8RV
+BF FqiqoVi + BFIW g 1q0 + (FLEBRBW ! 1 — BEL R, W o1 — B ERBW ! 0)qige

First-order condition for firm 1

0 = 8Q, +6Qy + B3 W o — 321)Q°Q, — 38F1Q°Q1 V]
BRI RBW! L — 3R FBW | — SFLEY, W 0)Q7°Q1qs + 3BFLFQ° Q12 V)

Bezout number foF I, # 0: 2-2-3-(3-5)% = 2700
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Equilibrium

my mo | Bezout 7-Bezout Real¢y ¢ | Vi V5

> 2 432 14 5203 203 1452 1452
101 576 31 7190 1131404 1056
13 576 31 7172 33 1201 550
1 1| 2700 177 11103 1031011 1011
1 2| 2700 177 1086 28 820 516
2 2 2700 177 1121 21 372 372

Running time for 177 paths less than 95 sec

)
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Summary

All-solution homotopy methods for polynomial systems
Real and complex solutions, solutions at infinity
Theoretical bounds on the number of solutions
Accounting forall finite and infinite solutions is possible
Find all solutions to equilibrium equations in economics

Computational approach to proving uniqueness
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Difficulties

POLSYSPLP currently cumbersome to use

Interface needed for solving many similar systems
Convergence problems due to manifolds at infinity

Other software packages have high set-up cost
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Extensions

Complementarity conditions
Generic systems and Cheater’'s homotopy

Parallelization
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