ADAPTIVE QUADRATURE IN THE DYNAMICS PROGRAM
Given sample data X, M factors, and model parameters Γ, consider the conditional likelihood for a single agent’s experience: 
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The dynamics program minimizer navigates the likelihood function surface, changing model parameters Γ at each step. Driven by surface geometry, model parameters vary in ways that are unpredictable ex ante. We shall investigate evaluating the agent likelihood along a path in parameter space in a case simplified for easy comprehension. 
Step 1: Simplify the model for pedagogy.
1.
Three states — start-state S is the lone decision point with two exits, states Z and W. The zero-cost exit state is Z, the cost-exit state is W.

2.
A single normal factor θ with density 
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3.
Start-state S is a null state; i.e., no outcome is defined for state S. Let i in {2,3} index states {W,Z}. States 2 and 3 each specify one outcome, earnings 
[image: image3.wmf]i

y

. Earnings are specified by a linear equation including earnings shock 
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Assume factor-loading αi is non-zero. Exploiting symmetry of 
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4.
A single test T, outcome 4, is specified to determine the scale of the factor. The test score designated 
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 is specified by a linear equation with disturbance 
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5.
Finally, consider the transition probability for exit from state S. Since W and Z are both absorbing states, the difference in exit-state systematic values is
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Define vectors
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Define scalar
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Psychic costs for exit to state W have disturbance 
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The probability of exit to W is 
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Transition probabilities for agent exit from start state S are:
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(4)
Given the five model specifications, the likelihood in (1.0) is written
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whenever the outcome equation factor loadings 
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(5)
Step 2: Simplify the integrand 

Lemma 1:
The product of two normal pdf’s is a constant times a normal pdf. That is, given constants μ1 and μ2 and positive constants σ1 and σ2, there exists constant μ* and positive constants σ* and γ such that
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Corollary 1:
A finite product of normal densities is a constant times a normal density. That is, given K > 1 constants 
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Proofs of both lemmas specify formulae for μ*, σ*, and γ.
(6)
When K = 4, 
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where
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and
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whenever the outcome equation factor loadings 
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(7)
Remove dependence on non-zero factor loadings. (Superscript A denotes agent-dep.)
Let 
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Notice that 
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Then (4.5) is:
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Challenge: Calculate 
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Gauss-Hermite quadrature is a natural choice for integration on R:

Let HN ( {((n,Wn) : n = 1,…,N} denote the set of points and weights, resp., for N‑point Gauss-Hermite quadrature. For any function F(y) ( C2N (R) that satisfies 
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Proceedingly naively, let 
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  is integrable on R;
so
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(10)

Problem: Consider the quadrature approximation for the complete integral of the normal density with mean zero:
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 (to 15-digits). 

where {(Θn,Wn) : n = 1,…,50} are parameters for 50-point Gauss-Hermite quadrature. See Numerical Recipes method gauher(). 

For σ = 0.05, the result is worse with 24 points and only slightly better with 100 points.
But also consider (to 15-digits):
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where {(λn,wn) : n = 1,…,50} are parameters for 50-point Gauss-Legendre quadrature on the interval [−9σ,9σ] — quadrature is adapted to the support of the integrand in this case. 

See Numerical Recipes method gaulen(). 
(11)

What is an appropriate adaptation for the likelihood integral in (6.16)?
Intuition: Suppose exactly one (k, say (2 ≡ τ2/|α2|, is very small relative to the other three standard deviations. From (6.1–3) it is easy to see that: 
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When any one (k is very small, the integrand in (6.16) is a spike with significant support in a small interval containing 
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 — a primary insight for identifying an adaptive strategy. What happens if the integrand support is “spread out” to include more evaluation points?
(12)

Lemma 2: The Adaptive Rule for Gauss-Hermite quadrature of the normal pdf.

HN ( {((n,Wn) : n = 1,…,N} denotes parameters of N‑point Gauss-Hermite quadrature.
If F(y) is a polynomial of degree < 2N, then F[2N ](y) = 0 ( 
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   for all N.

For each N > 0, define:
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Pick any constant ( and positive constant (  and define the adaptation map 
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(7.2)

Pick any function G(( ) ( C2N(R) satisfying: 
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is integrable on R.
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Then, there exists ( ( R such that
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where
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(7.5)

Proof:
Apply change of variable ( = AH(y | (,( ) defined in (7.2) to the integral in (7.4).
(13)

By Lemma 2, the quadrature sum is an approximation of the integral; 

that is,
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(7.7)

whenever the error term 
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In particular, 
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 specify the agent likelihood integrand of (6.16). Further, 
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Define
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Apply change of variable 
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In calculating the integral of (6.16) by approximation formula (8.2), we see that 

· All agent dependence in the calculation is in the agent-specific constants
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Naïve Gauss-Hermite points and weights HN, a set of universal constants for each N, suffice for approximating the integral for all agents.
· Evaluation of the integral does not require calculating the integrand density at each quadrature point (n. Given 
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Given integer N, a computer algorithm can calculate Gauss-Hermite points and weights HN once at the start of program execution. Then, to evaluate agent likelihood in (6.16), the algorithm calculates agent-specific 
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 by (6.8–11) and then approximates the likelihood using (8.2). 
(14)

But what is the error of approximation (8.2)? When is 
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Some mathematical results eliminate special cases:

Lemma 3:
Approximation (8.2) is exact when 
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Lemma 4:
In (8.3), if uA = 0, then, for all t5 ( R\{0},


(a) 
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   and   (b) approximation (8.2) is exact for all N > 0.

So, in general consideration of approximation error, we may assume 
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. Importantly, this assumption implies t5 ( 0. In fact, we may also assume t5 > 0:

Remark 8.1.3. 
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[image: image98]
In contrast, it is not sufficient to consider only one sign for uA, as discussed below. 
From this point, general consideration can proceed in two ways — 

1.
Investigate bounds on the error term, which, by (7.5), (7.2), and (8.3), is:
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(9.0)

2.
Proceed empirically by calculating the likelihood for a representative range of values (uA, t5) in an effort to discover regularities of accuracy and inaccuracy. 

Investigation of the error term is a complicated analysis detailed elsewhere. For now, let’s proceed empirically.

(15)

In empirical investigation of an integral, it is very helpful to develop intuition about the geometry of the integrand. Figure 8.0 presents the central case, t5 = 1 and uA = 0:
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figure 8.0:
Plot of integrand F ( y) and its components in (8.4) with parameters t5 = 1, uA = 0.

Note: (RF( y) = 0.5 for all t5 when uA = 0. See Lemma 4.
(16)

The multiplied components of integrand F( y) are:
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and 
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Since t5 is assumed positive, we consider only the usual orientation of the cdf component.

Characteristics of F( y) components are primary features of adaptation to changing model parameters and data varying by agent. The original integrand density for 
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 in (6.16) is transformed in (8.5) to a fixed density centered at the origin and independent of all parameter values and agent data. To compensate, the original cdf in (6.16) is translated and rescaled by parameters and data. By (8.3), a small standard deviation (*, which causes inaccuracy with naïve quadrature, may imply a small t5 which implies the cdf component of F( y) has large standard deviation. Untransformed density with narrow peak is replaced by a pdf of fixed peak-width >
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(17)

Figures 8.1a–f below illustrate the integrand F( y) in (8.4) for selected values of t5 and uA.
When uA and t5 are positive, the cdf component mean is left of the origin by (8.5):
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figure 8.1a:  Plot of transformed likelihood integrand components in (8.4) with parameters t5 = 0.5 = uA.

Note: The integral of F( y) ( 0.672639576990712 with N = 15. See Table 8.1a below. 
[image: image199.wmf](

)

2

2

2

+

F

y

[image: image200.wmf](

)

2

2

1

2

1

,

-

N

[image: image201.wmf]2

1

y

e

-

p

[image: image202.wmf](

)

2

2

2

e

)

(

2

π

1

+

F

º

-

y

y

F

y

[image: image203.wmf](

)

2

1

2

2

-

F

y

[image: image204.wmf](

)

2

2

2

1

,

N

[image: image205.wmf]2

e

π

1

y

-

[image: image108.emf]0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0


figure 8.1b:  Plot of transformed likelihood integrand components in (8.4) with parameters t5 = 1.0 = uA.

Note: The integral of F( y) ( 0.760249938906524 with N = 28. See Table 8.1b below. 
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figure 8.1c:  Plot of transformed likelihood integrand components in (8.4) with parameters t5 = 2.0 = uA.

Note: The integral of F( y) ( 0.814453315238651 with N = 78. See Table 8.1c below.

When uA < 0 and t5 > 0, the cdf component mean is right of the origin by (8.5):
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 figure 8.1d:  
Plot of transformed likelihood integrand components in (8.4) with parameters t5 = 0.5 = (uA.

Note: The integral of F( y) ( 0.327360423009288 with N = 15. See Table 8.1d below. 
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 figure 8.1e:
Plot of transformed likelihood integrand components in (8.4) with parameters t5 = 1.0 = (uA.

Note: The integral of F( y) ( 0.239750061093477 with N = 29. See Table 8.1e below. 
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 figure 8.1f:
Plot of transformed likelihood integrand components in (8.4) with parameters t5 = 2.0 = (uA.

Note: The integral of F( y) ( 0.185546684761349 with N = 81. See Table 8.1f below. 

For each selected pair of parameters (uA,t5) in Figures 8.1a–f, Tables 8.1a–f below describe accuracy of the quadrature sum in (8.2) as a function of the number of quadrature points N. Calculations for each table below were used to position the vertical lines under the curve of F( y) in each figure above. For the N of the last row in each table, quadrature points in HN that fall in the interval [(3,+3] are at the position of those vertical lines and small y-axis-ticks in the figure corresponding to the table. 

In the tables, the quadrature sum in (8.2) that approximates (F( y)dy is denoted:
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The error of approximation (8.2) is simply the difference
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For each table row, (F( y)dy was calculated by Romberg integration on the interval [(9,+9]. Romberg calculation was conducted in 19-digit hardware precision. Iterative refinement of the interval partition terminated with the relative error of polynomial interpolation < 10(16. 

Since approximation error EN (uA,t5) does not directly reveal the number of significant digits in the approximation, define the relative error at N points of approximation (8.2):
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Then the decimal significance at N points of approximation (8.2) is: 
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In the tables, SN (uA,t5) rounded down to the nearest integer is the number of significant decimal digits in H(N (( | uA,t5) relative to the Romberg value for (F( y)dy. 

For given (uA,t5), each table lists values of H(N (( | uA,t5) and the signed error (8.14) for selected increasing N until REN (uA,t5) < 10(15. Thus, table lengths vary with the efficiency of Gauss-Hermite quadrature at each (uA,t5). The last two columns show REN (uA,t5) with SN (uA,t5) rounded down to the nearest tenth. When H(N (( | uA,t5) equals the Romberg value, both rounded to 15 digits, the value of the quadrature sum is shown in bold-face.

(18)
When uA and t5 are positive:
	N
	H(N (( | 0.5,0.5)
	EN (0.5,0.5)
	REN (0.5,0.5)
	SN (0.5,0.5)

	4
	0.672618686869557
	2.08901211543
	 ( 10(5
	3.10569313327
	 ( 10(5
	4.5

	8
	0.672639574765081
	2.2256304
	 ( 10(9
	3.3088008
	 ( 10(9
	8.4

	12
	0.672639576990494
	2.172
	 ( 10(13
	3.229
	 ( 10(13
	12.4

	15
	0.672639576990712
	(2 
	 ( 10(16
	3
	 ( 10(16
	15.5


 table 8.1a:
 Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 0.5 = uA.

 In H15, the extreme points are (4.49999070730939 with weight 8.58964989963327 ( 10(10.
	N
	H(N (( | 1.0,1.0)
	EN (1.0,1.0)
	REN (1.0,1.0)
	SN (1.0,1.0)

	4
	0.758944432021307
	1.3055068852163
	 ( 10(3
	1.7172074845465
	 ( 10(3
	2.7

	8
	0.760251305281224
	(1.3663747004
	 ( 10(6
	1.7972703849
	 ( 10(6
	5.7

	12
	0.760250049464872
	(1.105583487
	 ( 10(7
	1.454236865
	 ( 10(7
	6.8

	16
	0.760249940494693
	(1.5881696
	 ( 10(9
	2.0890098
	 ( 10(9
	8.6

	20
	0.760249938922564
	(1.60404
	 ( 10(11
	2.10989
	 ( 10(11
	10.6

	24
	0.760249938906643
	(1.196
	 ( 10(13
	1.573
	 ( 10(13
	12.8

	28
	0.760249938906524
	(4 
	 ( 10(16
	6
	 ( 10(16
	15.2


 table 8.1b:
 Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 1.0 = uA.

 In H28, the extreme points are (6.59160544236774 with weight 6.43254743880186 ( 10(20.
 Note: Romberg value = 0.760249938906523 at relative tolerance 10(16 rounded to 15 digits.

	N
	H(N (( | 2.0,2.0)
	EN (2.0,2.0)
	REN (2.0,2.0)
	SN (2.0,2.0)

	4
	0.816631474537427
	(2.1781592987761 
	 ( 10(3
	2.6743820155460
	 ( 10(3
	2.5

	8
	0.818015114411898
	(3.5617991732470
	 ( 10(3
	4.3732392104063
	 ( 10(3
	2.3

	12
	0.814804231765483
	(3.509165268317
	 ( 10(4
	4.308614382998
	 ( 10(4
	3.3

	16
	0.814430926294541
	2.23889441103
	 ( 10(5
	2.74895364675
	 ( 10(5
	4.5

	20
	0.814438558202192
	1.47570364595
	 ( 10(5
	1.81189470083
	 ( 10(5
	4.7

	24
	0.814450180176825
	3.1350618260
	 ( 10(6
	3.8492836451
	 ( 10(6
	5.4

	28
	0.814452900521139
	4.147175118
	 ( 10(7
	5.091974015
	 ( 10(7
	6.2

	32
	0.814453293777743
	2.14609082
	 ( 10(8
	2.63500778
	 ( 10(8
	7.5

	36
	0.814453322229591
	(6.9909400
	 ( 10(9
	8.5835981
	 ( 10(9
	8.0

	40
	0.814453318135879
	(2.8972278
	 ( 10(9
	3.5572668
	 ( 10(9
	8.4

	44
	0.814453315930169
	(6.915176
	 ( 10(10
	8.490576
	 ( 10(10
	9.0

	48
	0.814453315365336
	(1.266851
	 ( 10(10
	1.555462
	 ( 10(10
	9.8

	52
	0.814453315256783
	(1.81315
	 ( 10(11
	2.22622
	 ( 10(11
	10.6

	56
	0.814453315240331
	(1.6799 
	 ( 10(12
	2.0627
	 ( 10(12
	11.6

	60
	0.814453315238586
	6.56 
	 ( 10(14
	8.05
	 ( 10(14
	13.0

	64
	0.814453315238569
	8.20 
	 ( 10(14
	1.006
	 ( 10(13
	12.9

	68
	0.814453315238625
	2.61
	 ( 10(14
	3.20
	 ( 10(14
	13.4

	72
	0.814453315238645
	6.2 
	 ( 10(15
	7.6
	 ( 10(15
	14.1

	76
	0.814453315238650
	1.2 
	 ( 10(15
	1.5
	 ( 10(15
	14.8

	78
	0.814453315238651
	5 
	 ( 10(16
	7
	 ( 10(16
	15.1


 table 8.1c:
 Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 2.0 = uA.

 In H78, the extreme points are (11.7257979195159 with weight 7.6920667316977 ( 10(61.

When uA is negative and t5 is positive:
	N
	H(N (( | (0.5,0.5)
	EN ((0.5,0.5)
	REN ((0.5,0.5)
	SN ((0.5,0.5)

	4
	0.327381313130443
	(2.08901211543
	 ( 10(5
	6.38138262476
	 ( 10(5
	4.1

	8
	0.327360425234919
	(2.2256304
	 ( 10(9
	6.7987154
	 ( 10(9
	8.1

	12
	0.327360423009506
	(2.172
	 ( 10(13
	6.635
	 ( 10(13
	12.1

	15
	0.327360423009288
	2 
	 ( 10(16
	6
	 ( 10(16
	15.2


 table 8.1d:
 Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 0.5 = (uA.

 In H15, the extreme points are (4.49999070730939 with weight 8.58964989963327 ( 10(10.
 Note: Romberg value = 0.327360423009289 at relative tolerance 10(16 rounded to 15 digits.
	N
	H(N (( | (1.0,1.0)
	EN ((1.0,1.0)
	REN ((1.0,1.0)
	SN ((1.0,1.0)

	4
	0.241055567978693
	(1.3055068852163
	 ( 10(3
	5.4452828051931
	 ( 10(3
	2.2

	8
	0.239748694718776
	1.3663747004
	 ( 10(6
	5.6991630956
	 ( 10(6
	5.2

	12
	0.239749950535128
	1.105583487
	 ( 10(7
	4.611400232
	 ( 10(7
	6.3

	16
	0.239750059505307
	1.5881696
	 ( 10(9
	6.6242717
	 ( 10(9
	8.1

	20
	0.239750061077436
	1.60404
	 ( 10(11
	6.69048
	 ( 10(11
	10.1

	24
	0.239750061093357
	1.196
	 ( 10(13
	4.988
	 ( 10(13
	12.3

	28
	0.239750061093476
	4
	 ( 10(16
	1.8
	 ( 10(15
	14.7

	29
	0.239750061093477
	0 
	
	2
	 ( 10(16
	15.6


 table 8.1e:
 Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 1.0 = (uA.

 In H29, the extreme points are (6.72869519860885 with weight 1.02934180872194 ( 10(20.
	N
	H(N (( | (2.0,2.0)
	EN ((2.0,2.0)
	REN ((2.0,2.0)
	SN ((2.0,2.0)

	4
	0.183368525462573
	2.1781592987761 
	 ( 10(3
	1.17391442567546
	 ( 10(2
	1.9

	8
	0.181984885588102
	3.5617991732470
	 ( 10(3
	1.91962425943005
	 ( 10(2
	1.7

	12
	0.185195768234517
	3.509165268317
	 ( 10(4
	1.8912573257942
	 ( 10(3
	2.7

	16
	0.185569073705459
	(2.23889441103
	 ( 10(5
	1.206647488156
	 ( 10(4
	3.9

	20
	0.185561441797808
	(1.47570364595
	 ( 10(5
	7.95327411995
	 ( 10(5
	4.0

	24
	0.185549819823175
	(3.1350618260
	 ( 10(6
	1.68963505334
	 ( 10(5
	4.7

	28
	0.185547099478861
	-4.147175118
	 ( 10(7
	2.2351114078
	 ( 10(6
	5.6

	32
	0.185546706222257
	(2.14609082
	 ( 10(8
	1.156631186
	 ( 10(7
	6.9

	36
	0.185546677770409
	6.9909400
	 ( 10(9
	3.76775258
	 ( 10(8
	7.4

	40
	0.185546681864121
	2.8972278
	 ( 10(9
	1.56145489
	 ( 10(8
	7.8

	44
	0.185546684069831
	6.915176
	 ( 10(10
	3.726921
	 ( 10(10
	8.4

	48
	0.185546684634664
	1.266851
	 ( 10(10
	6.827669
	 ( 10(10
	9.1

	52
	0.185546684743217
	1.81315
	 ( 10(11
	9.77195
	 ( 10(11
	10.0

	56
	0.185546684759669
	1.6799 
	 ( 10(12
	9.0540
	 ( 10(12
	11.0

	60
	0.185546684761414
	(6.56 
	 ( 10(14
	3.536
	 ( 10(13
	12.4

	64
	0.185546684761431
	(8.20 
	 ( 10(14
	4.417
	 ( 10(13
	12.3

	68
	0.185546684761375
	(2.61
	 ( 10(14
	1.405
	 ( 10(13
	12.8

	72
	0.185546684761355
	(6.2 
	 ( 10(15
	3.33
	 ( 10(14
	13.4

	76
	0.185546684761350
	(1.2 
	 ( 10(15
	6.6
	 ( 10(15
	14.1

	80
	0.185546684761349
	(2
	 ( 10(16
	1.1
	 ( 10(15
	14.9

	81
	0.185546684761349
	1 
	 ( 10(16
	7
	 ( 10(16
	15.1


 table 8.1f:
 Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 2.0 = (uA.

 In H81, the extreme points are (11.9681194448687 with weight 2.45280551389805 ( 10(63.

For each (uA,t5), define quadrature inefficiency ineff(uA,t5) ( min{N : REN (uA,t5) < 10(15}. Define (uA,t5) as a problem point if ineff((uA,t5) > 40. There are two problem point cases.
Problem 1:  uA < (10. (The cdf component mean is positive.)
	uA
	N
	H(N (( | uA,1.0)
	EN (uA,1.0)
	REN (uA,1.0)
	SN (uA,1.0)
	Romberg Value

	(1
	29
	0.239750061093477
	
	(6
	 ( 10(17
	2
	 ( 10(16
	15.6
	0.239750061093477
	

	(2
	30
	0.786496035251426
	 ( 10(1
	 (4
	 ( 10(18
	6
	 ( 10(17
	16.2
	0.786496035251426
	 ( 10(1

	(3
	30
	0.169474267623446
	 ( 10(1
	(4
	 ( 10(18
	2
	 ( 10(16
	15.6
	0.169474267623446
	 ( 10(1

	(4
	30
	0.233886749052363
	 ( 10(2
	1
	 ( 10(18
	6
	 ( 10(16
	15.1
	0.233886749052363
	 ( 10(2

	(5
	33
	0.203476008722479
	 ( 10(3
	1
	 ( 10(19
	7
	 ( 10(16
	15.1
	0.203476008722479
	 ( 10(3

	(6
	34
	0.110452484992927
	 ( 10(4
	(7
	 ( 10(21
	7
	 ( 10(16
	15.1
	0.110452484992927
	 ( 10(4

	(7
	35
	0.371549186170706
	 ( 10(6
	9
	 ( 10(23
	2
	 ( 10(16
	15.6
	0.371549186170706
	 ( 10(6

	(8
	35
	0.770862895014000
	 ( 10(8
	7
	 ( 10(24
	9
	 ( 10(16
	15.0
	0.770862895014001
	 ( 10(8

	(9
	38
	0.983080220771443
	 ( 10(10
	3
	 ( 10(26
	3
	 ( 10(16
	15.4
	0.983080220771444
	 ( 10(10

	(10
	39
	0.768729897214017
	 ( 10(12
	0
	 
	0
	 
	( 16.0
	0.768729897214017
	 ( 10(12

	(11
	41
	0.367892395898720
	 ( 10(14
	1
	 ( 10(30
	4
	 ( 10(16
	15.4
	0.367892395898720
	 ( 10(14

	(12
	42
	0.107598683562495
	 ( 10(16
	4
	 ( 10(33
	4
	 ( 10(16
	15.3
	0.107598683562495
	 ( 10(16

	(13
	44
	0.192107416356032
	 ( 10(19
	1
	 ( 10(35
	5
	 ( 10(16
	15.2
	0.192107416356032
	 ( 10(19

	(14
	47
	0.209191280388971
	 ( 10(22
	(7
	 ( 10(39
	3
	 ( 10(16
	15.4
	0.209191280388971
	 ( 10(22

	(15
	49
	0.138832469301529
	 ( 10(25
	(6
	 ( 10(42
	4
	 ( 10(16
	15.3
	0.138832469301528
	 ( 10(25

	(16
	51
	0.561214858649146
	 ( 10(29
	2
	 ( 10(45
	4
	 ( 10(16
	15.4
	0.561214858649146
	 ( 10(29

	(17
	54
	0.138116203566689
	 ( 10(32
	(1
	 ( 10(48
	8
	 ( 10(16
	15.0
	0.138116203566689
	 ( 10(32

	(18
	56
	0.206851587325691
	 ( 10(36
	(6
	 ( 10(54
	3
	 ( 10(17
	16.5
	0.206851587325691
	 ( 10(36

	(19
	59
	0.188460724282744
	 ( 10(40
	1
	 ( 10(56
	6
	 ( 10(16
	15.2
	0.188460724282744
	 ( 10(40

	(20
	60
	0.104424379188127
	 ( 10(44
	2 
	 ( 10(61
	2 
	 ( 10(16
	 15.6
	0.104424379188127
	 ( 10(44


table 8.2c:
Efficiency of N-point adaptive Gauss-Hermite quadrature with t5 ( 1.0 and uA increasingly negative.

In H60, the extreme points are (10.1591092461801 with weight 6.2601756734114 ( 10(46.
Note: Romberg values were calculated on interval [(16,+16] with tolerance < 10(16.

A quadrature sum equal to the Romberg value rounded to 15 digits is in bold-face. 

Compare Table 8.2c with Table 8.2a for uA increasingly positive (negative cdf means).
	uA
	N
	H(N (( | uA,1.0)
	EN (uA,1.0)
	REN (uA,1.0)
	SN (uA,1.0)
	Romberg Value

	1
	28
	0.760249938906524
	(4
	 ( 10(16
	6
	 ( 10(16
	15.2
	0.760249938906523

	2
	28
	0.921350396474858
	(5
	 ( 10(16
	6
	 ( 10(16
	15.2
	0.921350396474857

	3
	28
	0.983052573237656
	(4
	 ( 10(16
	4
	 ( 10(16
	15.4
	0.983052573237655

	4
	27
	0.997661132509476
	6
	 ( 10(16
	6
	 ( 10(16
	15.2
	0.997661132509476

	5
	25
	0.999796523991277
	1
	 ( 10(16
	1
	 ( 10(16
	15.8
	0.999796523991277

	6
	24
	0.999988954751500
	6
	 ( 10(16
	6
	 ( 10(16
	15.2
	0.999988954751501

	7
	22
	0.999999628450814
	(6
	 ( 10(16
	6
	 ( 10(16
	15.2
	0.999999628450814

	8
	19
	0.999999992291372
	(7
	 ( 10(16
	7
	 ( 10(16
	15.1
	0.999999992291371

	9
	17
	0.999999999901693
	(8
	 ( 10(16
	8
	 ( 10(16
	15.0
	0.999999999901692

	10
	14
	0.999999999999231
	5
	 ( 10(16
	5
	 ( 10(16
	15.3
	0.999999999999231

	11
	12
	0.999999999999997
	(4
	 ( 10(16
	4
	 ( 10(16
	15.4
	0.999999999999996

	12
	1
	1.000000000000000
	0 
	
	0 
	
	 ( 16.0
	1.000000000000000


  table 8.2a:
  Efficiency of N-point adaptive Gauss-Hermite quadrature with t5 ( 1.0 and uA increasing.

  Note: A quadrature sum equal to the Romberg value rounded to 15 digits is in bold-face.
In both Tables 8.2a,c above, the table entry for each uA is for N ( ineff(uA,1). Table 8.2c shows the effect on quadrature efficiency as the magnitude of uA < 0 increases with t5 fixed at 1. As a positive cdf mean increases with constant standard deviation, the cdf component converges to the constant function 0 on significant support of the integrand F( y), so F( y) converges to zero. In contrast, as a negative cdf mean decreases with constant standard deviation, the cdf component converges to the constant function 1 on significant support of the integrand F( y), so F( y) converges to the pdf component.
It is clear that adaptive quadrature maintains 15-digit accuracy across 46 orders of magnitude for the likelihood integral in the two tables. It is also clear that quadrature efficiency improves with increasingly positive uA in 8.2a and worsens with increasingly negative uA in 8.2c. 
One might expect that efficiency would improve in both cases because F( y) converges to a function for which quadrature is exact in both cases. Intuitively, inefficiency increases, in 8.2c because, with increasingly negative uA, the interval of significant support widens as the integral value decreases. In Table 8.2a, quadrature evaluation points (n with decreasing N are located in narrower intervals centered at the origin with larger weights Wn. In 8.2c, larger N locates quadrature evaluation points farther from the origin in the wider interval of significant support where, for each n, the contribution (nF((n | uA, t5) to the quadrature sum, though small because (n and F((n | uA, t5) are both small, is nonetheless significant because the sum is small. This intuition is one way of interpreting the character of polynomial approximation for F( y) at each degree N when uA is negative.
Problem 2:  t5 > 1. (The cdf component standard deviation is small.)

This problem is evident in both Tables 8.1c and 8.1f. As t5 increases beyond 2, efficiency worsens rapidly. Indeed, ineff((4,4) > 180. This problem with small cdf component standard deviations is the analogue of the problem with small pdf component standard deviations. In the simple model, there is a work-around for this problem:
Lemma 7:
For all (uA, t5) ( R ( R\{0}, define 
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Lemma 7 establishes (uA, t5) and (uA*, t5*) as calculation duals. F( y | uA, t5) is said to be dual to F*( y | uA, t5) ( F( y | uA*, t5*). This dualism is very affective. For example, as remarked above, ineff((4,4) > 180, but ((1,0.25) is dual to ((4,4) and ineff((1,0.25) = 10:
	N
	H(N (( | 1.0,0.25)
	EN (1.0,0.25)
	REN (1.0,0.25)
	SN (1.0,0.25)

	4
	0.834012223599186
	4.28594457
	 ( 10(8
	5.13894668
	 ( 10(8
	7.2

	8
	0.834012266458670
	(3.82
	 ( 10(14
	4.58
	 ( 10(14
	13.3

	10
	0.834012266458632
	0 
	
	0
	
	( 16.0


table 8.4b:
Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5* = 0.25 and uA* = 1.0.

(19)
To describe the region of adaptive Gauss-Hermite quadrature inaccuracy more fully, relative approximation errors at N = 40 were determined on a 400 ( 400 grid of 160,000 points 
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  in a subset of the (uA, t5)-plane. The 400 uA‑coordinate values were regularly spaced in the interval [(20.0,+20.0] separated by 0.1, excluding zero because quadrature is exact when uA = 0. The 400 t5-coordinate values were regularly spaced in the interval [0.01,4.00] separated by 0.01. No grid point had a negative t5-coordinate because the likelihood function and the approximation formulae are even functions of t5. Calculations on the grid for t5j ( 1 used approximation formula (8.2), while calculations for t5j > 1 used the dual function F*( y | uA, t5) of Lemma 7. 
With this specification, calculation on the grid was conducted to locate the subset region where relative error of adaptive quadrature approximation with N = 40 is greater than or equal to ( ( 10(15. Importantly, all 80,000 relative errors calculated with 
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 were less than 10(15 at N = 40. Results for the remaining 80,000 grid points with coordinate 
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 are plotted in Figure 8.6a below.
Three characteristics of Figure 8.6a are noteworthy:

· To characterize approximation error at a fixed number M of quadrature points (uA, t5), e.g. at M = 40, we may define two classes of quadrature inaccuracy. 

Inaccuracy at (uA, t5) is in the first class if 1 ( N ( M ( REN (uA, t5) ( accuracy (. This class of inaccuracy is labeled Underdone in Figure 8.6a. 

Inaccuracy at (uA, t5) is of second class if there exists m < M such that REm(uA, t5) < (; but REM (uA, t5) ( (. This class of inaccuracy is labeled Overdone in Figure 8.6a. 

To classify the grid points, the value of the quadrature sum for all N = 1,2,…,40 was calculated for all 160,000. If the result is accurate at all m ( N ( 40 points, then white space is plotted in Figure 8.6a. If the result is inaccurate at all N ( 40 points, then Underdone inaccuracy is plotted. Otherwise Overdone inaccuracy is plotted.

· The closed trapezoidal region T in the lower quarter of the figure highlights the use of Lemma 7 for calculations of quadrature sums at grid points in rectangle A ( {(uA, t5) : (20 ( uA < 0 and 1 < t5 ( 4}. Every point in T is (uA*, t5*), dual to a unique (uA, t5) ( A under the dual map of Lemma 7. For example, the left boundary of A is a segment of the line uA = (20 which maps to the diagonal boundary of T.

· Figure 8.6a presents three fairly distinct regions containing points of quadrature inaccuracy — Analytic, Unstable, and Indeterminate. The Analytic region is the unbounded steadily-darkening roughly-triangular subset at lower left, distinct from the Unstable region immediately below where points of Overdone inaccuracy are more abundant. The Indeterminate region lies mostly above t5 = 1 dotted with isolated points where 10(14 ( RE40
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t5j) < 10(13. Inaccuracy in each region is of interest.

The Analytic region is the site of points with Problem 1.
At points of inaccuracy in the Unstable Region, REN
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t5j) oscillates about ε.

Points of inaccuracy in the Indeterminate Region are sites of Romberg inaccuracy.
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figure 8.6a:  Inaccuracy regions for adaptive 40-point Gauss-Hermite quadrature.


  At each grid point, the Romberg value was calculated on the interval [(16,+16].

Note 1: RE40(uA, t5) is plotted whenever t5 ( 1; RE40(uA*, t5*) is plotted whenever t5 > 1.



  The trapezoidal region is the image of {t5 ( 1} under the dual map (uA, t5) ( (uA*, t5*).

Note 2: “Underdone” means REN(uA, t5) < 10(15 is not achieved with N ( 40.



  “Overdone” means REN(uA, t5) < 10(15 is achieved at some N < 40 but not at N = 40.


Note 3: In H40, extreme points are (8.09876113925085 with weight 1.46183987386942 ( 10(29.

Oscillation of the quadrature sum in the Unstable Region is exemplified by Figures 8.7a,b.
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 figure 8.7a: Approximation error oscillation yielding Underdone inaccuracy at N = 40 in Table 8.7a.
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figure 8.7b: Approximation error oscillation yielding Overdone inaccuracy at N = 40 in Table 8.7b.
Compare oscillatory inaccuracy with Underdone inaccuracy in the Analytic Region.
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figure 8.7c:
  Approximation error sequence at t5 = 1.0 and uA = (17.5. At N = 40, inaccuracy is Underdone.
  In H54, the extreme points are (11.4786603187226 with weight 2.39641805232478 ( 10(58.
Conclusion: Figure 8.6a answers the question “When is 
[image: image130.wmf])

,

,

|

(

*

*

s

m

h

A

N

G

D

 small enough?”

How do we use the information in Figure 8.6a?
We should identify the region S of parameter space where the strategy is suitable and the complementary region U where accuracy and/or efficiency are unsuitable. Calculations for construction of Figures 8.6a and 8.6b provide a foundation for identifying S and U. A specific algorithm is presented later after discussion of the approximation error function (N ( y | G,(,( ) defined by (7.5). Here we assert two general conclusions to set the direction of further developments. 

First, the Gauss-Hermite strategy is suitable for accurate approximation at most points of the parameter space R ( R\{0}. Specifically, 40-point quadrature was demonstrated to be competent for 15-digit accuracy at (uA, t5) at more than 95% (by Euclidean measure) of the disconnected set G ( [(20,+20] ( [(4,+4] ( R ( R\{0}. Points of accuracy in G are parameters for values of the likelihood integral spanning 89 orders of magnitude. It was also demonstrated that the minimum integer m satisfying REm(uA, t5) < 10(15 often also satisfies m < 40. Because evaluation of likelihood integrand F((n | uA, t5) is expensive, for the sake of algorithm efficiency we must identify S and classify its points by m. 

Second, the Gauss-Hermite strategy is inefficient for accurate calculation at many points in the Analytic region. Many points of inaccuracy in the Unstable region might be less worrisome because approximation error in the Unstable region of G is observed beyond the 12th digit. However, it is not clear that Unstable region inaccuracy is bounded with increasingly negative uA. For an accurate approximation at all points of the parameter space, U must be identified (say, as the complement of G), perhaps with some flexibility depending on user specification of tolerance or even automated by tracking the magnitude of function value change across minimizer steps. Naturally, however U is identified, an alternative strategy for approximating the likelihood integral at points in U should be developed. 
One might contemplate avoiding the challenge by considering two effects. First, at points in the Analytic and Unstable regions, the likelihood is very small. Thus, since the minimizer is maximizing the likelihood (by minimizing the negative log-likelihood), minimizer trial values for the parameters are biased away from points in U. Second, one might also consider scaling agent data so that minimizer trial values for the parameters — observed and unobserved predictor loadings and distribution parameters — are small enough to ensure that uA is never sufficiently negative for the minimizer path to traverse U. In this point of view, the challenge for accuracy is simply a data-scaling problem.
It is easy to see that scaling the data cannot ensure an empty intersection between U and the minimizer path. Recall the definitions of uA and  t5 in (8.3):
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as defined at (6.8,9). Scaling the data and astutely choosing estimation starting values can ensure that the numerators and denominators of the above expressions are small along the minimizer path. However, scaling cannot ensure that the ratio defining uA is bounded away from points in U. 

Nonetheless, the first sensibility is correct — the minimizer is biased for trial parameter values such that path points (uA, t5) are outside U. An alternative strategy for calculating the likelihood integral can rely on this bias by relaxing concern for efficiency of the calculation at points in U. Because accuracy is harder to achieve on U, more work is required and lower efficiency is achieved. However, because the measure of U is a small fraction of the measure of S, and because the minimizer is biased away from U, it is reasonable to expect that the fraction of calculation on U is small and decreasing as an estimation sequence proceeds to the likelihood maximum. Thus, lower efficiency is experienced on a small and decreasing fraction of the total calculation. We shall quantify approximation efficiency and accuracy on U in discussion of the alternative strategy for approximating the likelihood integral with parameters (uA, t5) in U.
So the direction of next developments is two-fold. First, we will investigate the approximation error function to discover mathematical characterization of Gauss-Hermite quadrature accuracy. Then we will present an algorithm for specifying S and classifying its point by m. This is the most crucial need because, as explained above, we expect most of the calculation to occur at points in S where efficiency is highest. 

Then, having specified S and calculation on S, we will define U as the complement of S and specify a less efficient but sufficiently accurate strategy for approximating the likelihood integral at points in U. 

From there we will broaden discussion to models of greater complexity — multiple factors and multiple agent decisions. We shall see that more complex non-linearity in the likelihood integrand for multiple decisions requires more complex analysis and development. However, inituition developed by investigation of the simple model will inform our approach to calculation for more complex models.

Lagniappe:
The following is useful for analysis of likelihoods with normal probability.
Lemma:
Let 
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Proof:
We argue that (a) ( (b) ( (c) ( (d) ( (e) ( ( f ).
(a)
The first limit in (a) is obvious. As 
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(b)
Pick any ( > 0. From l’Hopital’s Rule for n = 1 and then induction, it is well-known that 
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Thus, there exists M1 such that 
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From the second limit in (a), there exists M2 ( 0 such that 
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Let M ≡ min{M1,M2}. Then 
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(c)
For the first equality in (c), note that 
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So h(z) is the anti-derivative of ((z), whence 
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Now take the limit as a ( (( on both sides of the above equation and apply (b):
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The argument for the second equality in (c) is analogous. Note that 



[image: image156.wmf])

(

)]

(

2

)

(

2

[

)]

(

)

(

)

(

)

1

(

)

(

2

[

)

(

2

1

2

2

2

1

z

h

z

z

z

z

z

z

z

z

z

z

z

k

=

+

F

=

-

+

+

+

F

=

¢

f

f

f

f

.

So k(z) is the anti-derivative of h(z). By the argument for h(z), 
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(d)
That g(z) is everywhere positive is obvious. That g(z) is everywhere increasing is a consequence of (c). Consider:



[image: image158.wmf])

(

1

)

(

)

(

1

)]

(

[

)

(

)

(

)

(

)

(

)

(

2

z

zg

z

z

z

z

z

z

z

z

z

z

g

+

=

F

+

=

-

F

-

=

¢

f

f

f

f

f

.

Thus,
[image: image159.wmf])

(

)

(

)

(

z

g

z

z

h

¢

=

f

.

Then

[image: image160.wmf]0

)

(

0

)

(

)

(

0

)

(

0

)

(

>

¢

Þ

>

¢

Þ

>

F

Þ

>

F

ò

¥

-

z

g

z

g

z

dy

y

z

z

f

.
So g(z) is everywhere increasing. That g(z) is everywhere convex is analogous. 
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 (e)
The necessary inequalities have already been proved in (d). Specifically,
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For the limit, multiply the inequality by 
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Take the limit on all sides of this inequality: 
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Thus, the decimal significance is 
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Proof:
{1 ( ((z) = (((z) and (((z) = ((z)} ( {q(z) = g((z), r(z) = h((z), s(z) = k((z)} as defined in Lemma 5. Thus the geometry of Corollary 5.1 is the reflection z ( (z of the geometry of Lemma 5. Assertions (a–f) above are the reflection of (a–f) in Lemma 5. Argue (a) ( (b) ( (c) ( (d) ( (e) ( (f ) accordingly. ▌
y





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





By (8.3), the sign of t5 depends only on (5, the factor loading in the cost equation for exit to state W; so t5 can be positive or negative. By (8.4),
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Geometrically, a plot of F( y | uA, (t5) is the mirror image of the plot for F( y | uA, t5). Furthermore, with s ( (y,
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The likelihood integral is an even function of t5. Given (uA,( t5), approximation (8.2) is identical for either sign of t5; thus, it is sufficient to characterize approximation (8.2) for t5 > 0.
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