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data are ideal in the sense that they have the necessary variation to separately identify 
switching costs from consumer heterogeneity. Equally important, consumers exhibit inertia 
in their brand choices, a form of psychological switching cost. This makes our results 
applicable to the broad range of products that are distinctly identified (i.e. branded) rather 
than just to those products for which there is a product adoption cost or explicit switching 
fee. In our simulations, prices are as much as 18 per cent lower with than without switching 
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1.  Introduction  

Surveying the theoretical literature on switching costs, Klemperer (1995, p. 527) and Farrell 

and Klemperer (2006, p. 23) conclude that there is a “strong presumption” that switching 

costs make markets less competitive.1  We propose a model with switching costs that can be 

calibrated from actual consumer panel data.  For levels of switching costs found in our data, 

we find that equilibrium prices fall in the presence of switching costs.   We argue that the 

conventional wisdom may not be applicable to empirically relevant models even with high 

switching costs. 

 We work with a model that captures the main elements of empirical environments in 

which switching behavior is observed.  Typically, we observe switching costs in markets with 

differentiated products and with sellers that are not subject to some terminal (i.e. finite 

horizon) trading period.   Switching in spite of the presence of switching costs is an 

empirical regularity in many consumer product markets.  Often, switching occurs even 

though the relative prices of products remain roughly constant.  Thus, an empirically viable 

model must allow for differentiated products (in contrast to Farrell and Shapiro (1988) and 

Padilla (1995)) and imperfect lock-in (compare with Beggs and Klemperer (1992)) in an 

infinite horizon setting. 

 Numerical simulations with a simplified version of our empirical model reveal that 

prices fall for intermediate levels of the switching cost relative to an environment with zero 

switching costs.  The incentive for a firm to lower its price and “invest” in customer 

acquisition is found to outweigh the incentive for a firm to raise its price and “harvest” its 

existing customer base.  This seemingly counter-intuitive finding reflects the strategic effects 
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of firms lowering their prices to defend themselves against other firms’ attempts to steal 

customers.  However, for large enough switching costs levels, the strategic effects are 

dampened and equilibrium prices rise.  In general, these preliminary numerical findings 

suggest that the impact of switching costs on equilibrium prices is an empirical question 

about the magnitude of switching costs. 

 Switching costs are typically not directly observed.  Instead, the analyst must infer 

their magnitude from the observed switching behavior of consumers.    Consumers are also 

typically heterogeneous in their baseline preferences for products.  To separate consumer-

specific switching costs from brand preferences, panel data with a long time dimension and 

some source of exogenous switching is required.  Panel data on the purchases of branded, 

frequently purchased products is well-suited to this task.  Switching costs enter demand 

models used for these types of products in the same way as in the applied theory literature 

on switching costs.  Frequent price reductions or sales induce switching in the panels, 

allowing us to separately identify heterogeneity and switching costs.  We estimate the 

demand model from data on two categories of frequently purchased consumer products 

(refrigerated orange juice and margarine), and then compute the price equilibrium2. 

 A large empirical literature has shown that choices for these types of consumer 

goods markets exhibit “psychological switching costs,” often termed brand loyalty or simply 

state-dependence (c.f. Erdem (1996), Roy, Chintagunta, and Haldar (1996), Keane (1997), 

Seetharaman, Ainslie, and Chintagunta (1999), Seetharaman 2004 and Dubé et al. (2006)). Of 

course, switching costs can come from a variety of sources including product adoption costs, 

                                                                                                                                                 
1 Recent unpublished theoretical work provides two counter examples. (Viard (2003) and Dogangolu (2004)). 
Neither of these models can be brought to data directly.  Thus, it remains to be seen if these examples are 
empirically relevant.  
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shopping/search costs, and psychological sources.  For example, it is true that razor 

companies create switching costs between brands of razor blades by making handles or 

razors that only fit their blades.  This certainly is one source of switching costs, but not 

necessarily the largest or most universal.  The mere purchase/consumption of a distinctly 

identified (e.g. branded) product can create a switching cost.  Klemperer (p. 518) points this 

out when he cites “psychological costs of switching, or non-economic “brand-loyalty” as an 

important example of switching costs (see also Farrell and Klemperer p. 15).  These 

psychological costs are often thought to come from the well-known phenomenon of 

“cognitive dissonance” in which consumers change their preferences to “rationalize” 

previous choices.  These psychological sources of switching costs are applicable to a much 

broader array of products than a switching cost narrowly defined as a monetary fee or 

learning costs.  Both psychological switching costs and a monetary switching fee will give 

rise to an observationally equivalent form of inertia in consumer purchases. 

 Our estimated switching costs are on the order of 15 to 19 per cent of the purchase 

price of the goods.  When these switching costs are used in model simulations, equilibrium 

prices decrease relative to prices without switching costs.  This prediction is very robust to 

variation in the parameter values.  In particular, if switching costs are scaled up to four times 

those inferred from our data, we still find that prices decline.  We observe price reductions 

of up to 18 percent in the presence of switching costs.   

                                                                                                                                                 
2 In previous work, Dubé et al. (2006), we used the same demand specification to study the category 
monopolist’s problem.  Clearly, competitive forces can alter equilibrium prices due to strategic effects and this 
is the focus here. 
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2.  Model 

The model consists of single-product firms competing for consumers with switching costs 

by pricing differentiated products.   Each firm sets a pricing policy to maximize the 

discounted sum of profits over an infinite horizon.  The solution concept for this game is 

Markov perfect equilibrium (MPE).  The goal is to study the effects of consumer switching 

costs on pricing in the context of a model that generalizes much of the empirical research on 

differentiated products demand estimation. Unlike much of the established theoretical 

literature, we allow for product differentiation and imperfect lock-in—the possibility that 

consumers switch away from products they have previously purchased—which are features 

commonly present in actual markets.  In addition, we include a random utility component 

which allows for the possibility that consumers switch products even when relative prices are 

not changing.  After developing the model in general, we briefly explore a simple case to 

illustrate how these features of consumer choice influence pricing in the presence of 

switching costs.  The advantage of this simple model is that it simplifies computation of an 

equilibrium, which means we can easily explore a number of comparative static exercises. 

Demand 

Demand derives from a population of consumers who make discrete choices from J product 

alternatives and an outside option (i.e. no-purchase).  For simplicity, we drop the consumer-

specific index.  In each period t, a consumer is loyal to one product, { }∈ 1, ...,ts J .   If the 

consumer is currently loyal to product j, =ts j , and purchases product ≠k j , then her 

loyalty state changes, + =1ts k .  If the consumer chooses product  j or the outside option, 

then + =1t ts s , i.e. the consumer's brand loyalty remains unchanged.  Conditional on price 
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p jt  and her current loyalty state st , the consumer’s utility index from the choice of  a 

product j at time t is 

{ }δ α γ ε= + + ≠ +jt j jt t jtu p I s j . (1) 

 
The demand model is (1) has been used extensively in the empirical literature on consumer 

package goods (c.f. Erdem (1996), Keane (1997), and Shum (2004)).  We assume that the 

random utility component ε jt  is i.i.d. Type I Extreme Value distributed.  If the consumer is 

loyal to j but buys product k ≠ j , she foregoes the utility componentγ .  Thus, she implicitly 

incurs a switching cost.  Note that the consumer behavior associated with switching 

cost/product loyalty,γ , is different from the consumer behavior associated with the brand 

intercept, δ j .  An increase in the brand intercept will always increase the probability of 

purchase of the jth brand, while the switching cost parameter will only increase the purchase 

probability if the consumer is currently loyal to j.  

 Let   U( j , st , pt )  denote the deterministic component of the utility index, such that 

ε= +( , , )jt t t jtu U j s p .  The utility from the outside alternative is ε= =0 0(0, , )t t t tU U s p .  

The consumer’s choice probability has the logit form 

 
=

=
∑ 0

exp( ( , , ))( , ) .
exp( ( , , ))

t t
j t t J

t tk

U j s pP s p
U k s p

 (2) 

Demand parameters in (2), ( )θ δ δ α γ= …1, , , ,J , are consumer-specific with N 

“types” in the market.  The behavior of each consumer type n is fully summarized by the 

taste vector, θ n .  The probability of buying product  j  by a consumer of type n in state st , 
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for example, is denoted by 
  
Pj (st , pt ;n ) . We assume that for each consumer type, there is a 

continuum of consumers in the market with mass μn .   

 At any point in time, the market is summarized by the distribution of consumers 

over types and loyalty states.  Let [ ]∈ 0,1n
jtx  be the fraction of consumers of type n who are 

loyal to product j.  The vector 
  
xt

n = (x1t
n , ..., x Jt

n )  summarizes the distribution over loyalty 

states for all consumers of type n, and = 1( , ..., )N
t t tx x x  summarizes the state of the whole 

market.   X denotes the state space. 

 Aggregate demand is obtained by summing consumer level demand over consumer 

types and loyalty states.  Aggregate demand for product  j  is given by  

 ( ) ( )μ
= =

⎛ ⎞
= ∑ ∑⎜ ⎟

⎝ ⎠1 1
, , ; .

JN n
j t t n kt j t

n k
D x p x P k p n  (3) 

Evolution of the State 

The distribution of consumer loyalty states, xt = (xt
1 ,..., xt

N ) , summarizes all current-period 

payoff-relevant information for the firm, and describes the state of the market.  The 

transition of the aggregate state can be derived from the transition probabilities of the 

individual states.  Conditional on a price vector pt , we can define a Markov transition matrix 

  Q( pt ;n )  with elements 

 += =1( ; ) Pr{ | , ; }jk t t tQ p n s j k p n ,  

where 

 +

+ =⎧
= = ⎨ ≠⎩

0
1

( , ; ) ( , ; ) if ,
Pr{ | , , }

( , ; ) if .
j t t t t t

t t t
j t t t

P s p n P s p n j s
s j s p n

P s p n j s
 (4) 
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Q jk( pt ;n )  denotes the probability that a consumer of type n who is currently loyal to k will 

become loyal to product j.  The whole state vector for type n then evolves according to the 

Markov chain 

 xt +1
n = Q( pt ;n )xt

n .   

Consumers can change loyalty states but not types such that the overall market state vector 

 x t  also evolves according to a Markov Chain with a block diagonal transition matrix.  The 

evolution of the state vector is deterministic, and we denote the transition function by f, 

  xt +1 = f (xt , pt ) . 

Firms 

 We consider a market with J competing single-product firms.  Time is discrete, 

  t = 0,1,... .  Conditional on all product prices and the state of the market, xt , firm j’s current-

period profit function is: 
  
π j (xt , pt ) = D j (xt , pt ) ⋅( p j − c j ) .  c j  is the marginal cost of 

production, which does not vary over time.  Firms compete in prices and choose Markovian 

strategies,3 σ →\:j X , that depend on the current payoff-relevant information, 

summarized by x.  Firms discount the future using the common factor β , 0 ≤ β < 1.  For a 

given profile of strategies,
  
σ = (σ1 , ...,σ J ) , the PDV of profits, β π σ∞

=∑ 0
( , ( ))t

j t tt
x x , is well-

defined.  Conditional on a profile of competitor’s strategies, σ− j ,  firm j chooses a pricing 

strategy that maximizes its expected value.  Associated with a solution of this problem is 

firm j’s value function, which satisfies the Bellman equation 

                                                 
3 This assumption rules out behavior that conditions current prices also on the history of past play, and thus 
collusive strategies in particular. 
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 { }π β
≥

= + ∀ ∈
0

( ) max ( , ) ( ( , )) .
j

j j jp
V x x p V f x p x X  (5) 

In this equation, the price vector consists of firm j’s price and the prices prescribed by the 

competitor’s strategies, 
  
p = (σ1(x ), ...,σ j −1(x ), p j ,σ j +1(x ),...,σ J (x )) .  Therefore, the 

Bellman equation (5) depends on the pricing strategies chosen by the competitors.   

 We use Markov perfect equilibrium as our solution concept.  A Markov perfect 

equilibrium in pure strategies is defined by a pricing strategy for each firm, *
jσ , and an 

associated value function, jV , such that 

 ( ) ( )( ) ( )( )( ){ }− −= +* *max , , , ,
jj p j j j j j jV x x p x V f x p xω σ β σ  

for all states, x, and firms.  That is, in each subgame starting at x, the firm’s strategy is a best 

response to the strategies chosen by its competitors.  For a simple version of the model 

which we will explore in the next section, we can prove the existence of a pure strategy price 

equilibrium.  However, we cannot prove that a pure strategy equilibrium exists in general.4  

We establish the existence of a pure strategy equilibrium computationally on a case-by-case 

approach.  In Appendix E, we describe the numerical algorithm used to compute the price 

equilibrium. 

A Simplified Model 

Let us briefly consider a simplified variant of the model discussed above for the purpose of 

building an intuition as to why switching costs can lead to lower equilibrium prices.  In 

section 3, we will return to the model with many consumer types and base our pricing 

computations on empirical estimates of this model.   

                                                 
4 Even in static games of price competition, restrictions on the distribution of consumer tastes need to be 
imposed to establish the existence of a pure strategy equilibrium (Caplin and Nalebuff 1991).  In general, the 
“non-parametric” distribution of tastes that our model allows for does not obey these restrictions.   
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 We assume there is exactly one consumer in the market, who chooses among the J 

products and an outside option in each period as in (1) above.   With only one consumer, 

equilibrium computations are simplified greatly, facilitating the comparative statics necessary 

to develop an intuition as to the role of switching costs.  Here we are following a number of 

recent papers that use computational methods to establish properties of various theoretical 

models (c.f. Doraszelski and Satterthwaite (2005) and Besanko, Dorazelski, Kryukov and 

Satterthwaite (2007)).   

 The loyalty variable of this consumer, ∈ ={1, ..., }ts X J , summarizes all current-

period payoff-relevant information, and describes the state of the market.  Conditional on all 

product prices and the state of the market, firm j receives the expected current-period profit 

  
π j (st , pt ) = Pj (st , pt ) ⋅( p jt − c j ) .  While we can show the existence of a pure-strategy 

equilibrium (see appendix A.1), we cannot characterize the equilibrium policies analytically.  

Instead, we solve the game numerically for different parameter values. 

Equilibrium Price Computations with the Simplified Model 

We now explore the predictions of the simplified pricing model.  To keep the exposition as 

simple as possible, we focus on symmetric games with two firms.  Each firm has the same 

utility intercept and marginal production cost.  In a symmetric equilibrium,  σ1
*(1) = σ 2

*(2)  

and  σ1
*(2) = σ1

*(1) .  We therefore only need to know firm 1’s pricing policy to characterize 

the market equilibrium. 

 We first consider the case of homogenous products (i.e. with ε jt = 0).  In this case, 

we can establish theoretically (see appendix A.2) that switching costs allow firms to raise 

prices above the baseline Bertrand outcome, where p = c .  In particular, there is an 
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equilibrium where the firm that possesses the loyal customer increases its price above cost by 

the value  υ = (1− β )γ .  υ  is the flow value of the switching cost.  If the firm charges an 

even higher price, the competitors could poach the customer by subsidizing the switching 

cost, incurring a loss in the current period, and recouping this loss by pricing above cost in 

the future.  In summary, if products are not differentiated, then we find that switching costs 

make markets less competitive, as predicted by much of the previous literature. 

 We now turn to the case of differentiated products and switching in equilibrium.  In 

the case of product differentiation, the customer sometimes switches, and therefore we 

characterize the equilibrium outcome by the average transaction price paid, conditional on a 

purchase: 

 
  
pa =

P1(1,σ *(1)) ⋅σ1
*(1)+ P2(1,σ *(1)) ⋅σ 2

*(1)
P1(1,σ *(1))+ P2(1,σ *(1))

.   

That is,  p
a  is the expected price paid in state st = 1 , which—due to symmetry—is the same 

as the expected price paid in state st = 2 .  ( ) ( )⋅ ⋅ ⋅ ⋅1 2, , ,P P  are the probabilities of choice of 

each product conditional on price and loyalty state. 

 Figure 1 shows the relationship between the level of switching costs and the average 

transaction price for the case of δ α= = =1, 0.5, 1j jc .  We find that prices initially fall and 

then rise for larger switching cost levels.  Indeed, only for switching cost levels larger than 4 

does the average transaction price exceed the transaction price without switching costs.  

Although not reported, the main result that prices are decreasing-then-increasing in the level 

γ was found to be robust to the exclusion of the outside good and to the degree of 

switching (the scale of the intercept and price coefficients in (1)).  These results show that 

the conjectured effect of switching costs on prices—switching costs make markets less 
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competitive—need not be true in a model that is a simplified variant of a widely used class 

of empirical demand models. 

 To understand our results, recall that under competition with switching costs, firms 

face two incentives that work in opposite directions (c.f. Klemperer 1987).  First, firms can 

“harvest” a loyal customer by charging higher prices.  Second, firms can “invest” in future 

loyalty by lowering current prices.  Our results imply that either force can dominate in 

equilibrium.  Imperfect lock-in )( ∞<γ  and the random component in consumer tastes, 

features common to many empirical models of differentiated products demand, stimulate the 

incentive to cut prices to attract competitors’ loyal customers.  Anticipating this incentive, 

the competitor lowers its price to prevent the customer from switching.  In some instances, 

this downward-pressure on prices overshadows the upward-pressure from harvesting.  In 

contrast, Beggs and Klemperer (1992) only consider the case of perfectly locked-in 

consumers )( ∞=γ .  In their specification, the incentive to harvest will always outweigh the 

incentive to invest. 

 To illustrate the role of the investment motive, we examine the extreme case where 

only the “harvesting” incentive is present.  To exclude the investment motive, we consider 

competitors who do not anticipate the future benefits from lowering current prices, and 

hence set prices in a myopic ( β = 0 ) fashion.  Figure 1 shows the average transaction price 

paid under this scenario, and allows us to compare the pricing outcomes with fully rational, 

forward-looking firms and myopic decision makers.  After eliminating the investment 

motive, prices always rise in the degree of switching costs—switching costs make markets 

less competitive.  In general, the average transaction price under competition with forward-

looking firms is always lower than the average price under myopic competition. 
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 One of the difficulties in interpreting the comparative static result displayed in Figure 

1 is that an increase in γ  not only increases the switching cost, it also leads to an increase in 

the total market size (i.e., a decrease in the outside good share).  Since our interest lies in the 

role of switching behavior, we construct an adjusted comparative static exercise in which γ  

does not influence the outside share and leaves the total market size constant.  Table 1 

indicates that we still observe the main result of decreasing-then-increasing prices.  In 

addition, Table 1 reports the probability that the consumer will remain loyal.  It is 

remarkable that even when the consumer will remain loyal with probability .981, equilibrium 

prices are still below those that would occur without switching costs.  This suggests that 

results in the literature that prices rise are closely linked with assumptions of perfect lock-in. 

 In Table 2, we report the impact of switching costs on firm profits.  We consider 

profits from both the oligopolistic equilibrium prices as well as profits that would occur if  

prices were fixed at the levels obtained under zero switching costs ( )γ = 0 .  These profit 

values are found in the rightmost two colums of the table.  Interestingly, in this latter 

scenario, the firm with the loyal customer is strictly better-off when the switching cost 

increases.  However, when the firms re-optimize their prices, both firms can be strictly 

worse-off if the switching cost leads to lower equilibrium prices.  That is, the strategic effect of 

price competition on profits outweighs the direct effect of switching costs on profits, holding 

prices constant.  Thus, the investment motive under competition outweighs the harvesting 

incentive.  This outcome is an instance of a “Bertrand supertrap,” as analyzed in Cabral and 

Villas-Boas (2005) for finite-horizon games.   

 In Appendices C and D, we discuss two additional variants of the simple model to 

check the robustness of our results to other model features typically considered in the 

theoretical literature.  We consider separately the impact of forward-looking consumer 
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behavior and overlapping generations of consumers on equilibrium prices.  The main 

conclusion, that switching costs do not necessarily lead to higher prices, is robust to these 

different model formulations as well as a wide range of parameter values. 

 In summary, we have shown that, contrary to the conventional wisdom, switching 

costs can toughen price competition.  We have also shown that this result arises from the 

dynamics associated with the investment motive.  In particular, when there is some random 

switching in equilibrium, firms may compete both to attract and retain the customer.  When 

the strategic effects are large enough, they can cause the investment motive to outweigh the 

harvesting motive, leading to lower equilibrium prices.  In the next section, we investigate 

whether this result will still hold when we consider a richer model that generalizes much of 

the empirical research on demand estimation.  

 

3.  Empirical Model and Estimation 

We now explore the impact of consumer switching costs on our full model with many 

“types” of consumers.  Recall that for the simple version of the model with a single 

consumer, we observed that equilibrium prices can be lower with switching costs than 

without for a wide range of parameter values.  Therefore, the impact of switching costs on 

prices is an empirical matter regarding the magnitude of switching costs consistent with 

actual consumer behavior.  Hence, we calibrate our analysis of the full model using actual 

empirical estimates of the joint-distribution of preferences and switching costs, θ , for a 

population of heterogeneous consumers.  In the sections below, we describe the data and 

the procedure used to estimate the demand parameters. 

Econometric Model 
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For the full model, the probability that consumer h chooses alternative j given loyalty 

to product k is given by 

( ) ( )
( )

δ α γ
θ

δ α γ=

+ + =
= =

+ + + =∑ 1

exp { }
| ;

1 exp { }

h h h
j jh

J h h h
j jk

p I s j
P j s k

p I s k
. (6) 

One might argue that the switching cost, γ h , could be modeled using a much more complex 

function of a consumer’s purchase history.  However, as discussed previously, there is a well-

established precedent for using this specification in the empirical literature devoted to 

package goods demand.  Furthermore, this specification is identical to the one routinely used 

in the applied theory literature on switching costs. 

To accommodate differences across consumers in (6), we use a potentially large 

number of consumer types and a continuum of consumers of each type.  A literal 

interpretation of this assumption is that the distribution of demand parameters is discrete 

but with a very large number of mass points.  In the consumer heterogeneity literature (c.f. 

Allenby et al 1999), continuous models of heterogeneity have gained favor over models with 

a small number of mass points.  The distinction between continuous models of 

heterogeneity and discrete models with a very large number of mass points is largely 

semantic.  In fact, some non-parametric methods rely on discrete approximations.  Our 

approach will be to specify a very flexible, but continuous model of heterogeneity and then 

exploit recent developments in Bayesian inference and computation to use draws from the 

posterior of this model as “representative” of the large number of consumer types.   Each 

consumer in our data will be viewed as “representative” of a type.  We will use MCMC 

methods to construct a Bayes estimate of each consumer’s coefficient vector. 

 It is well known (c.f. Heckman 1981 and Keane 1997) that state dependence and 

heterogeneity can be confounded.  In the current context, a mis-specified tightly parametric 
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model of heterogeneity could lead to spurious findings of switching costs.   The state-of-the-

art in this literature (cf. Keane 1997) is to use normal models of heterogeneity.  There is 

good reason to believe that there may be substantial departures from normality for the 

distribution of choice model parameters across consumers.  For example, there may be sub-

populations of consumers with different preferences for different brands.  This might lead to 

multimodality in the distribution of the intercepts.  

 Our approach is to use a mixture of normals as the distribution of heterogeneity in a 

hierarchical Bayesian model.  As with sufficient components in the mixture, we will be able 

to accommodate deviations from normality such as multi-modality, skewness, and fat tails.  

Let  θ
h  be the vector of choice model parameters for consumer h.  The mixture of normals 

model specifies the distribution of θh  across consumers as follows: 

( )
( )

θ μ

π

Σ~ ,

~ multinomial

h
ind indN

ind
   

π is a vector giving the mixture probabilities for each the K components.  We complete the 

model specification with priors over the mixture probabilities and the mean and covariance 

matrices: 

( )

( )
( )

{ }

μ

π α

μ μ

υ

μ

−Σ Σ ×

Σ

Σ

1

~

~ ,

~ ,

, independent

k k k

k

k k

Dirichlet

N a

IW V
   

We implement posterior inference for the mixture of normals model of 

heterogeneity and the multinomial logit base model along the lines of Rossi et al. (2005).  We 

use a hybrid Metropolis method that uses customized Metropolis candidate densities for 

each consumer.  Conditional on the draws of θh , we use an unconstrained Gibbs sampler.  
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Since our goal is to estimate the distribution of model parameters over consumers, we do 

not have to impose constraints on this Gibbs sampler to ensure identification.   The density 

of model parameters is identified even if there is label switching.5  Moreover, it has been 

noted (Frühwirth-Schnatter 2001) that the unconstrained Gibbs sampler has superior mixing 

properties relative to Gibbs Samplers that are constrained in hopes of achieving 

identification of each component parameters. 

 Our MCMC algorithm will provide draws of the mixture probabilities as well as the 

normal component parameters.  Thus, each MCMC draw of the mixture parameters 

provides a draw of the entire multivariate density of consumer parameters.  We can average 

these densities to provide a Bayes estimate of the consumer parameter density.  We can also 

construct Bayesian credibility regions for any given density ordinate to gauge the level of 

uncertainty in the estimation of the consumer distribution. 

 We fit models with successively larger numbers of components and assess the 

adequacy of the number components by examining the fitted density as well as the Bayes 

factor associated with each number of components.  What is important to note is that our 

improved MCMC algorithm is capable of fitting models with a large number of components 

at relatively low computational cost. 

Description of the Data 

Switching costs are rarely directly observed (some components may be known, but the 

“hassle” costs of switching are not).  For this reason, we must turn to data on the purchase 

histories of customers to infer switching costs from the observed patterns of switching 

                                                 
5 In mixture models, there is a generic identification problem which has been dubbed “label switching.”  That 
is, the likelihood is unchanged if the labels for components are interchanged.  This is only a problem if 
inference is desired for the mixture component parameters.  In our application, we are interested in estimating 
individual household parameters and the distribution of parameters across households.  These quantities are 
identified even in the presence of label switching. 
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between brands in the face of price variation.  Consumer panel data on the purchases of 

packaged goods are ideal for estimating switching costs.  The panel length is long relative to 

the average inter-purchase times and there is extensive price variation that causes frequent 

brand-switching and, hence, generates variation in consumers’ loyalty states. 

For our empirical analysis, we estimate the logit demand model described above 

using household panel data containing all purchase behavior for the refrigerated orange juice 

and the 16 oz tub margarine categories.  The panel data were collected by AC Nielsen for 

2,100 households in a large Midwestern city between 1993 and 1995.  In each category, we 

focus only on those households that purchase a brand at least twice during our sample 

period.  Hence we use 355 households to estimate orange juice, and 429 households to 

estimate margarine demand.  Table 3 lists the products considered in each category as well as 

the purchase incidence, product shares and average retail and wholesale prices. 

 Over 85 per cent of the trips to the store recorded in our panel data do not involve 

purchases in the product category.  However, it is unlikely that each observed trip to the 

supermarket might potentially result in the purchase of either a pack of refrigerated juice 

and/or a tub of margarine.  For a more realistic analysis, we define the outside good in each 

category as follows.  In the refrigerated orange juice category, we define the outside good as 

any fresh or canned juice product purchase other than the brands of orange juice considered.  

In the tub margarine category, we define the outside good as any spreadable product i.e. 

Jams, Jellies, margarine, butter, peanut butter etc).6  In Table 3, we see that under these 

                                                 
6 In an earlier version of the paper, we defined the outside good as all store trips during which no product from 
the category of interest was purchased.  This broad definition of the outside good led to estimates that were 
driven more by purchase incidence than brand choice.  For instance, households who adopt a pattern of 
purchasing a product on a regular cycle will be perceived as relatively price insensitive as the changes in price of 
the category relative to the outside good will have little influence on purchase incidence for these households. 
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definitions of the outside good, we see a no-purchase share of roughly 24%, in refrigerated 

juice, and 46% in tub margarine. 

Demand Estimates 

We now report the empirical estimates of demand from the orange juice and margarine data.  

In Table 5, we report the log-marginal density for several alternative model specifications 

and for each category.  The posterior probability of a model specification is monotone in the 

log-marginal density, so that by choosing the model with the largest log marginal density we 

are picking the model with the highest posterior probability.   It should be noted that the 

log-marginal density includes an automatic penalty for adding additional parameters (c.f. 

Rossi et al. 2005).  By comparing models with and without switching costs and with varying 

degrees of heterogeneity, we can assess the importance of incorporating switching costs and 

non-normality.  We assess the non-normality of the distribution of heterogeneity by 

comparing the log-marginal density for mixture models with varying numbers of 

components. 

 The results in Table 5 indicate several important features of the model.  First, 

heterogeneity clearly leads to a substantial improvement in fit in both categories.  Adding a 

switching cost term to the model also leads to an improvement in fit, albeit smaller.  These 

results confirm the well-established belief that consumer demand for frequently-purchased 

CPG products exhibits a switching cost that generates choice inertia even after controlling 

for persistent differences in consumer tastes.7 

 An interesting finding is the extent to which flexibility in the heterogeneity 

distribution may be required to “fit” the data.  In both categories, we observe considerable 

improvement in fit by adding more components to the mixture.  The improved fit from 



 20

including five components in the mixture confirms the non-normality of the distribution of 

tastes in this category. 

 We now examine the model estimates to assess the non-normality of the fitted 

distributions of taste parameters.  Ultimately, our goal is to estimate the distribution of tastes 

across households, not to attach any meaning or substantive significance to the parameters 

of the mixture components.  Rather than report parameter estimates for the moments of 

each of the normal components, we instead plot the fitted marginal densities for several taste 

coefficients. 

 In Figures 2 and 3, we plot several fitted densities from the 1, 2 and 5 component 

mixture models for the margarine data.  We also report the 95% posterior credibility region 

for the 5-component mixture model.  This region provides point-wise evidence for the non-

normality of the population marginal density for a given coefficient.  Figure 2 provides 

compelling evidence of the need for a flexible model capable of addressing non-normality.  

In the upper panel, the Shedd’s brand intercepts from the 5-component model exhibit 

bimodality that cannot be captured by the 1 or 2 component models.  The bimodality 

implies that there are households who differ markedly in their quality perceptions for 

margarines  In general, the results suggest that one would recover a very misleading 

description of the data-generating process if the usual symmetric normal (1-component) 

prior were used to fit these data. 

 In Figure 3, the price coefficient (upper panel) for the 5-component model also leads 

to a highly asymmetric and bi-modal density.  In contrast, a symmetric 1-component model 

has both a mode and tails lying outside the credibility region for the 5-component model.  

                                                                                                                                                 
7 Although not reported, our findings are robust to the inclusion of promotional variables such as weekly 
product features and in-aisle displays. 
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For the switching cost estimates (lower panel), the 5 component model has a slightly lower 

mean and a thicker left tail than the 1-component model. 

 In Figure 4, we report fitted densities from the orange juice category.  Just as in the 

margarine category, the densities of the brand intercepts for orange juice exhibit striking 

forms of non-normality. 

 Figures 5 and 6 display the fitted densities of the switching cost premium in dollar 

terms for each category.  The inclusion of the outside option in the model enables us to 

assign money-metric values to our model parameters simply by re-scaling them by the price 

parameter (i.e. the marginal utility of income).  For the switching cost parameter reported in 

the figures, this ratio represents the dollar cost foregone when a consumer switches to 

another brand than the one purchased previously.  In the graphs, the point-estimate of 

switching costs from the homogeneous logit specification is denoted by a vertical red line. 

 Figures 5 and 6 display an entire distribution of switching costs across the population 

of households.  Some of the values on which this distribution puts substantial mass are 

rather large values, others are small.  To provide some sense of the magnitudes of these 

values, we compute the ratio of the dollar switching cost to the average price of the 

products.  The ratio of the mean dollar switching cost to average price is 0.19 for margarine 

and 0.15 for orange juice.  It should be emphasized that the entire distribution of switching 

costs will be used in computation of equilibrium prices.   The distribution of dollar switching 

costs puts mass on some very large values.  For example, the ratio of the 95th percentile of 

dollar switching costs to average prices is 0.85 for margarine and 0.48 for orange juice.  In 

the computations in Section 4 below, we will use this distribution of switching costs as the 

center point.  We will also explore magnifying this distribution by scaling it by a factor of 4. 
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4.  Pricing Implications of the Demand Estimates 

In this section, we use the estimated demand systems to explore the implications of 

switching costs for pricing.  For each of the categories, we compute the steady-state Markov 

perfect equilibrium prices corresponding to the demand estimates.  We then examine the 

sensitivity of these steady-state price levels to specific parameter values. 

 To compute prices, we need to simplify the demand estimates to reduce the 

dimension of the state space of the model to a feasible range.  For the orange juice data with 

355 consumer “types” and 6 products, one would literally need to solve a dynamic 

programming problem with a  355 ⋅5 = 1,775  dimensional state space.  We simplify the 

problem as follows.  For the orange juice category, we focus only on 64 oz Tropicana and 

Minute Maid.  We also take each household’s posterior mean taste vector and cluster them 

into 5 consumer “types.”  Then our state space is 5 ⋅1 = 5  dimensional.  Similarly, in the 

margarine category we focus on all 4 products, and we cluster consumers into 2 “types.”  

This clustering reduces the state space to 2 ⋅3 = 6  dimensions.   

 Results from the clustering are reported in Table 6 for each of the categories.  Recall 

that the flexible distribution of consumer tastes was critical during estimation to ensure we 

did not confound the empirical identification of switching costs with unobserved taste 

heterogeneity.  While the current simplifications eliminate some of the richness of the true 

demand system, they should not detract from our main objective, which is to examine the 

pricing implications of the estimated switching costs.8   

 In Table 7, we report our results relating steady state price and profits levels to the 

magnitude of the switching costs.  We compute equilibrium prices for a range of switching 
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costs achieved by scaling the distribution of cluster parameters.  That is, we multiply the 

switching cost parameter, γ, in each cluster by a scale factor reported in the left margin of 

Table 7.  To isolate the impact of switching costs on inter-brand switching behavior (i.e. not 

on the outside good), we use the adjusted comparative static discussed previously and 

outlined in Appendix B.  We see that prices decline as the switching cost increases from 

zero.  At the estimated switching costs, prices fall by six per cent for Promise and ICBINB 

margarine.  For orange juice, prices fall about three per cent at estimated switching cost 

levels.  We compute equilibrium prices not only for the level of switching costs found in our 

data, but also for much higher levels corresponding to scale factors greater than one.  We 

find that even with switching costs levels twice those revealed in our data, equilibrium prices 

are lower in the presence of switching costs.  Only at scale factors of 3 do we begin to see a 

small number of the product prices rising again and, at a scale factor of 4, only one of the 

products’ prices (Shedd’s) returns roughly to the zero-switching costs level.   Moreover, at a 

scale factor of 4, prices for the margarine brands Promise and ICBINB decline by over 15%.   

 Even more striking are the profit implications documented in Table 7.  As we raise 

the switching costs from zero to the estimated levels (i.e. scale factor of 1), profits for most 

of the brands fall.  In the case of Promise and Parkay, profits fall by more than 10%.  At a 

scale factor of 4, only Shedd’s experiences profit levels that exceed those of the zero-

switching costs regime.  The price and profit results generally indicate that, well within the 

range of switching costs levels we estimate empirically, switching costs intensify price 

competition. 

 

                                                                                                                                                 
8 In a companion paper (Dube et al (2006), we consider the monopoly problem and exploit the fact that Euler 
equations can be used to characterize the solution for the single agent problem.  This allows us to use more 
consumer types, something not possible if the solution to the dynamic game is desired.   
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5.  Conclusions 

We have demonstrated that equilibrium prices fall as switching costs increase for a realistic 

model.   In some instances, prices fall by over 15% and profits by over 10%.  This finding 

holds for a wide range of switching costs centered on those obtained from consumer panel 

data.  Very high levels of switching costs must prevail in order to obtain results similar to 

those conjectured by Klemperer, i.e. that switching costs make markets less competitive and 

provide additional profits.   Our switching cost estimates are based on consumer panel data 

for two categories of consumer products, margarine and orange juice.  These switching costs 

are important from a statistical point of view in the sense that models with switching costs 

account for observed behavior better than those without.  Our switching costs distribution 

puts mass on switching costs in the range of 15 to 60 per cent of purchase price.  In 

addition, we have scaled this distribution up by a factor of four and still observe lower prices 

with switching costs.  This means that our basic result applies to situations where switching 

costs are more than double the purchase price.   

 In our model, the source of switching costs is psychological.  It is well-known that 

the mere purchase/consumption of a product can create a form of inertia or brand loyalty 

which has psychological origins.  Psychological switching costs are well recognized in the 

switching cost literature as important (c.f the survey by Farrell and Klemperer (2006)).  

Moreover, psychological switching costs are present in any product category for which there 

are distinctly identified products (e.g. brands).  This makes psychological switching costs 

more broadly applicable than a more narrow definition which is restricted to monetary 

switching fees or product adoption costs.  

 Our results can be reversed if switching costs reach very high levels or if, indeed, 

they are infinite as assumed in some of the theoretical literature on switching costs.   In a 
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world with the levels of switching costs envisaged by much of the theoretical literature, we 

would not see consumers switching brands very often.  The empirical fact that consumers 

are observed to switch brands in many product categories supports the relevance of our 

result of declining prices.  
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Appendix A.1  Existence of Equilibrium in the Simple Model 

The existence of a Markov perfect equilibrium in our model follows from arguments 

given in Whitt (1980) and Doraszelski and Satterthwaite (2005).  In order to show that the 

equilibrium is in pure strategies, we need to show that the best-reply correspondence is 

single-valued.  Our strategy is to show that in the case of one consumer with logit demand, 

the right-hand side of the Bellman equation is strictly quasi-concave, and hence has a unique 

maximizer.  This strategy has been employed previously by Besanko et al. (2007). 

 The Bellman equation in the simple model is given by 

 ( ){ }π β
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Denote the right-hand side of this functional equation by Ψ j (s , p j , p− j ),  such that 

 
  
V j (s ) = max

p j ≥0
Ψ j (s , p j , p− j ), ∀s ∈X .  

This maximization problem has the following first-order condition: 
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Here, 
 
Pj  is shorthand for 

  
Pj (s , p j , p− j ).   Evaluating the second-order condition at a price 

where 
  
∂Ψ j / ∂p j = 0,  we find that 
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Hence, 
 
Ψ j  is strictly quasi-concave in p j ,  and hence it follows that there is a unique price 

that maximizes the right-hand side of the Bellman equation for any state s and price profile 

  
p− j = σ− j (s ).   
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Appendix A.2  Simplified Model without Logit Error 

 

If we remove the random utility component in (1) , ε jt , the equilibrium can be characterized 

analytically.  We focus on the case of symmetry across players, where all firms have the same 

utility intercepts (i.e. no vertical differentiation) and costs.  Removing ε jt  is analogous to 

eliminating the (horizontal) product differentiation and, hence, we are left with a model of 

homogeneous products.  We assume that the common utility intercept,  δ > c ≥ 0 .  

Proposition.  Let υ  be such that  0 ≤ υ ≤ (1− β )γ  and c +υ ≤ δ + γ .   Then under the assumptions 

stated above there is a symmetric Markov perfect equilibrium with pricing strategies 
  
σ j

*( j ) = c +υ  and 

  
σ j

*(k) = c +υ − γ  for all   k ∈X , k ≠ j . 

 

Proof.  j denotes the product to which the customer is loyal and k denotes any other product.  

Because 
 
p j = c +υ = pk + γ , the customer’s utility index is the same for all products.  

Therefore, by assumption she will not switch from product j to k, and because 

  0 ≤ δ + γ − (c +υ ) , she will not choose the outside option.  The value from this strategy is 

  
V j ( j ) = (1− β )−1υ  and 

  
V j (k) = 0 .  In order to assess whether the proposed strategies 

constitute a best response for each player, we only need to consider one-period deviations.  

If firm j reduces its price, it will reduce its current-period profit and leave its future value 

unchanged.  If firm j raises its price, it will loose its loyal customer and receive a payoff of 

zero now and in future.  Hence, 
 
p j = c +υ  is a best response to pk .  Competitor k needs to 

offer a price   pk = c +υ − γ − ε , ε > 0 , in order to acquire the customer.  Because 

 υ ≤ (1− β )γ , the present value from this one-period deviation is negative: 



 30

 
 
υ − γ − ε + β

υ
1− β

=
υ

1− β
− γ − ε < 0.   

Alternatively, firm k cannot improve on its current outcome by raising its price, and hence, 

 pk = c +υ − γ  is a best response to p j . 
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 Appendix B.  Comparative Statics Holding the Market Size Constant 

In order to eliminate the difference between the state dependence and the pure switching 

cost models, which is due to the differential impact on the outside good market share under 

changes in  γ , we define the outside good intercept as a function of the switching cost.  If 

 γ = 0,  we choose some arbitrary intercept, such as δ0 = 0.   We denote the resulting 

equilibrium prices in state s by   p
0(s ),  and let the corresponding outside good share be P0

0 .   

For  γ > 0,  choose δ0  such that P0(s , p0(s );δ0 ) = P0
0 ,  and note that due to symmetry, the 

left-hand side of this equation and hence the choice of δ0  is the same for either state, 

  s = 1,2.   Under this choice of  δ0 ,  if the firms do not change their prices compared to the 

case without switching costs, the outside good market share at any  γ > 0  will remain 

constant at   P0
0 ,  its level under  γ = 0.   However, even though the total market size does not 

change, the customer is more likely to purchase the good to which she is loyal to for larger 

values of  γ .   Note that this technique of defining the outside good intercept as a function of 

the switching cost eliminates any difference between the state-dependent and the pure 

switching cost model.  In particular, at any given price vector and δ0  as defined above, the 

predicted demand from either model formulation is identical. 
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Appendix C.  Forward-Looking Consumers in the Simple Model 

We now extend the model to allow for forward-looking consumers who anticipate the 

consequences of becoming loyal to product j.  In general, the presence of forward-looking 

consumers can complicate the computation of an equilibrium.  For example, Anderson, 

Kumar and Rajiv (2004) show the equilibrium proposed by Padilla (1995) does not in fact 

constitute a Markov perfect equilibrium under forward-looking consumer behavior.  

As before, the current-period utility from choosing product j is 

  
U j =U( j , s , p )+ λε j .  But, now consumers maximize the PDV of current and future 

utilities.  For simplicity, we assume that consumers discount future utilities at the same rate 

as firms, β .  Define the state transition function s ' = φ(s , j ) = j  if   j ≠ 0  and 

  s ' = φ(s ,0) = s .  The value function of the consumer given state s and idiosyncratic utility 

draws 
  
ε = (ε0 , ...,ε J )  is 

{ }υ ε σ λε β υ φ ε ε ε
=

= + + ∫0,...,
( , ) max ( , ( ), ) ( ( , ), ') ( ') ' .j

j J
s U s s j s j f d   (C.1) 

Note that this value function depends on the consumer’s expectation that the firms choose 

prices according to p j = σ j (s ) .  Following arguments given in Rust (1987), the consumer’s 

decision problem can be reformulated in the following way.  Let the expected future value 

from choosing alternative j in state s be 

{ } ( )σ λε β ε ε
=

= + +∫ 0,...,
( , ) max ( ', ( '), ) ( ', ) ,k

k J
W s j U s s k W s k f d  

where   s ' = φ(s , j ) .  Since ε  has the Type I extreme value distribution,   W (s , j )  has the 

closed form expression 
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Here,  γ ≈ 0.57722  is Euler’s constant.  The consumer then chooses the alternative 

  j = 0,..., J  that yields the highest utility index 

  
U(s ,σ(s ), j )+ βW (s ,φ(s , j ))+ λε j . 

Conditional on the consumer’s choice behavior, which is now also described by the 

consumer’s value function, W, the firm’s problem remains the same under forward-looking 
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consumer behavior.  A Markov perfect equilibrium now consists of pricing strategies and 

value functions for each firm j and the consumer’s consumption strategy, which is fully 

described by the value function W, such that (i) each firm’s pricing strategy is optimal given 

the consumer’s strategy and given the competitors’ strategies, and (ii) given the firms’ pricing 

strategies, the consumers value function satisfies equation (C.2). 

In Section 2, we explored the predictions of the simple model for the symmetric case 

with a symmetric equilibrium.  In this case, myopic and forward-looking consumer behavior 

is identical.  This can be seen from equation (C.2):  W actually depends only on   s ' = φ(s , j ) , 

the product that the consumer is loyal to in the next period.  Due to symmetry, the identity 

of this product does not matter.  Therefore, W is exactly the same for all   s ' ∈X , and 

therefore adds the same constant to each utility index.  Thus, the choice probabilities are not 

affected by the presence of W.  Therefore, our pricing results are robust to a forward-

looking consumer. 
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Appendix D.  Overlapping Generations Version of the Simple Model 

We now develop an OLG version of our simple state dependence model and examine the 

robustness of our previous finding that switching costs can lower equilibrium prices. In each 

period, a new customer is born.  The customer lives for two periods and, hence, the market 

always consists of a “young” and an “old” customer.  A customer can be loyal to one of the 

J products, or she can be unattached, i.e. loyal to the outside alternative.  If a customer is 

loyal to the outside alternative, she does not incur a switching cost for any product choice.  

Otherwise, her demand is as in the model analyzed before.  When the young customer is 

born, she is unattached.  If she chooses the outside alternative, she stays unattached in the 

next period, when she is old.  Otherwise, if she buys product j she becomes loyal to j.  The 

state of the market is now described by st ∈{0,1,..., J}, the choice that the currently old 

customer made in the previous period, t − 1 . 

Table D.1 shows the average transaction prices paid by the young and the old 

customer for different switching cost levels.  The model was solved with forward-looking 

consumers.  Due to lock-in, the old customer always pays a higher average price than the 

young customer.  Unless switching cost levels are sufficiently large, however, both the young 

and the old customer pay a lower price, on average, than in the case without switching costs.  

The young customer, in particular, generally pays a lower price.  Thus, our main conclusion 

that switching costs do not necessarily lead to higher prices is robust to a different model 

formulation as well as a wide range of parameter values. 
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Table D.1 
 Equilibrium prices in the OLG model 

 
 

Switching 
Cost p

young

a  p
old

a  

0.00 1.81 1.81
0.25 1.78 1.78
0.50 1.76 1.76
0.75 1.74 1.75
1.00 1.71 1.74
1.25 1.69 1.74
1.50 1.66 1.74
1.75 1.63 1.74
2.00 1.59 1.75
3.00 1.41 1.80
4.00 1.19 1.83
5.00 1.01 1.85
6.00 0.90 1.89
7.00 0.83 1.91
8.00 0.81 1.92
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Appendix E.  Numerical Solution to the Dynamic Program 

We use numerical methods to solve for the equilibrium of the pricing game.  We first 

discretize each axis of the state space using a finite number of 

points,  0 < xi 0 < xi1 < ... < xiL = 1 .  We then form a grid representing the whole state space 

from the Cartesian product of these points.  For each point in the grid, we store the value 

and policy functions of each competitor in the computer memory.  For states outside the 

grid, we calculate the value and policy functions using bilinear interpolation.  To solve for 

the equilibrium, we employ the following algorithm, which is an adaptation of policy 

iteration applied to the case of the games:  start with some initial guess of the strategy 

profile, 
  
σ0 = (σ1

0 , ...,σ J
0 ), and then proceed along the following steps: 

1. For the strategy profile   σ
n ,  calculate the corresponding value functions for each of 

the J firms.  These value function are defined by the Bellman equation (5), where the 

right hand side of the Bellman equation is not maximized, but instead evaluated 

using the current strategy profile σn .  

2. If   n > 0,  check whether the value functions and policy functions satisfy the 

convergence criteria, 
  
V j

n −V j
n−1 < εV and σ j

n − σ j
n−1 < εσ  for all firms j.  If so, 

stop. 

Update each firm’s strategy using the Bellman equation <reference>.  In contrast to step 1, 

the maximization on the right hand side is now carried out. Denote the resulting new 

policies and value functions by 
  
σ j

n+1  andV j
n+1 , and return to step 1. 
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Table 1 
Equilibrium Prices under Different Switching Cost Levels 

 
 

Switching Cost 
  p1

   p2
 pa  Purchase 

Prob. 1 
Purchase 
Prob. 2 

Prob. Stay 
Loyal 

0.00 1.808 1.808 1.808 0.236 0.236 0.764 
0.25 1.802 1.658 1.734 0.258 0.232 0.768 
0.50 1.794 1.500 1.662 0.279 0.227 0.773 
0.75 1.784 1.335 1.593 0.298 0.221 0.779 
1.00 1.773 1.165 1.528 0.317 0.214 0.786 
1.25 1.762 0.991 1.467 0.334 0.207 0.793 
1.50 1.750 0.813 1.410 0.349 0.199 0.801 
1.75 1.738 0.631 1.356 0.363 0.191 0.809 
2.00 1.727 0.445 1.307 0.376 0.183 0.817 
3.00 1.732 0.000 1.352 0.421 0.119 0.881 
4.00 1.782 0.000 1.607 0.450 0.049 0.951 
5.00 1.812 0.000 1.740 0.460 0.019 0.981 
6.00 1.844 0.000 1.816 0.458 0.007 0.993 
7.00 1.896 0.000 1.885 0.448 0.003 0.997 
8.00 1.972 0.000 1.967 0.430 0.001 0.999 

 
For positive switching cost levels,  δ 0

 is adjusted such the total market size remains constant; see Appendix B 
for the details.  The results were calculated for product intercepts = 1.0  and a price coefficient = 1.0, and 
outside good intercept at 0.  The discount factor is β = 0.998 .   
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Table 2 
Firm Profits under Different Switching Cost Levels  

 
 

Switching Cost pa  V1  V2  V1
0  V2

0  

0.00 1.808 154.1 154.1 154.1 154.1 
0.25 1.734 151.0 150.8 154.2 154.0 
0.50 1.662 146.9 146.6 154.3 153.9 
0.75 1.593 142.1 141.6 154.5 153.8 
1.00 1.528 136.7 136.1 154.7 153.6 
1.25 1.467 131.0 130.2 154.9 153.3 
1.50 1.410 125.1 124.2 155.3 153.0 
1.75 1.356 119.2 118.1 155.7 152.6 
2.00 1.307 113.4 112.1 156.2 152.1 
3.00 1.352 116.2 113.8 160.1 148.1 
4.00 1.607 141.2 135.1 169.8 138.4 
5.00 1.740 156.1 140.8 190.8 117.5 
6.00 1.816 172.1 134.2 225.0 83.2 
7.00 1.885 198.2 113.8 261.8 46.4 
8.00 1.967 236.1 80.3 287.2 21.1 

 
 
 
For positive switching cost levels,  δ 0

 is adjusted such the total market size remains constant; see Appendix B 

for the details.  The results were calculated for product intercepts = 1.0  and a price coefficient = 1.0.   V j  

denotes the value of firm j in state 1, while V j
0  denotes the value of firm 1 in state s  if prices remain constant 

at their no-switching-cost-level,   p1
= p

2
= 1.808.  
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Table 3 
Description of Data 

Refrigerated Orange Juice 

 

Product Retail 
Price 

Wholesale 
Price 

% 
trips 

 64 oz MM 2.21 1.36 11.1 
premium 64oz MM 2.62 1.88 7.00 
96 oz MM 3.41 2.12 14.7 
premium 64oz TR 2.73 2.07 28.8 
64 oz TR 2.26 1.29 6.76 
premium 96 oz TR 4.27 2.73 7.99 
no-purchase (% trips) 23.75  

# households 355  

# trips per household 12.3  

# purchases per 
household 

9.37  

 

Margarine  

 

 

 

 

 

Product Retail 
Price 

Wholesale 
Price 

% 
trips 

Promise 1.69 1.22 13.11 
Parkay 1.63 1.02 4.98 
Shedd's 1.07 0.83 12.66 
ICBINB 1.55 1.11 23.51 
no-purchase (% trips) 45.73  
# households 429  
# trips per household 18.25  
# purchases per 
household 

9.90   
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Table 4 
(a) Purchase versus re-purchase rates 

 
 

Category Refrigerated Orange Juice Tub Margarine 
Brand Minute Maid Tropicana Promise Parkay Shedd’s ICBINB
Sample 

purchase 
frequencies 

0.429 0.570 0.241 0.091 0.233 0.433 

Sample re-
purchase 

frequencies 

0.777 0.856 0.827 0.90 0.233 0.884 

 
 

(b) Purchase versus re-purchase rates and price discounts 
 

Category Refrigerated Orange Juice 
Brand Minute Maid Tropicana 

Sample re-
purchase 

frequencies 
after discount 

price 

0.741 0.833 
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Table 5 
Fit and the Role of Heterogeneity and State-dependence 

 
 

  Log Marginal Density 

Model # Components Margarine Orange Juice 

w/o Switching  
Costs No heterogeneity -10750.93 -7612.014 

  5-component -5529.788 -4471.425 
with Switching 
Costs No heterogeneity -8174.184 -6296.471 

 1-component -5548.706 -4473.165 

  2-component -5539.313 -4460.562 

  5-component -5469.324 -4425.97 

 10-component -5434.482 -4371.794 
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Table 6 
Clusters Used In Equilibrium Pricing Computations 

 
 

Refrigerated Orange Juice  
 

segment 
 64 oz 
MM 

premium 
64oz MM 

96 oz 
MM 

premium 
64oz TR 64 oz TR

premium 
96 oz TR price loyalty loyalty ($) size 

1 -2.88 -2.57 -2.50 -0.25 -2.59 -0.31 -1.19 0.69 0.59 0.26 
2 -2.62 -3.79 -1.79 -2.88 -3.72 -3.59 -0.91 1.23 1.36 0.25 
3 -13.09 -12.20 -9.54 -1.22 -9.53 -3.19 -0.31 -0.03 -0.10 0.02 
4 -0.37 0.32 0.01 1.53 -0.43 1.73 -2.08 0.23 0.11 0.18 
5 -1.30 -1.59 -0.50 -0.71 -1.92 -0.82 -1.65 0.61 0.37 0.29 

 
 
 
 
 
 

16 oz Tub Margarine 
 

segment Promise Parkay Shedd's ICBINB price loyalty loyalty ($) size 
1 -1.95 -3.47 -1.22 -2.67 -2.46 0.17 0.07 0.50 
2 -2.88 -6.87 -6.49 -2.97 -0.87 0.19 0.22 0.50 
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Table 7 
Equilibrium Prices and Profits 

 
Steady State Prices  

Scale 
Factor Prices 

 16-oz Tub Margarine Refrigerated Orange Juice
  Promise Parkay Shedd's ICBINB Minute Maid Tropicana 

0 1.887 0.732 0.704 1.838 1.517 1.996 
1 1.773 0.720 0.698 1.728 1.472 1.935 
2 1.680 0.708 0.696 1.646 1.451 1.895 
3 1.607 0.698 0.698 1.588 1.461 1.879 
4 1.549 0.694 0.704 1.548 1.494 1.901 

 
 

 
Steady State per Period Profits 

Scale 
Factor Profits 

  16-oz Tub Margarine Refrigerated Orange Juice
  Promise Parkay Shedd's ICBINB Minute Maid Tropicana

0 40.92 4.09 29.26 56.37 51.39 254.70 
1 36.31 3.27 31.59 53.18 46.28 254.30 
2 32.11 2.71 33.50 49.79 44.18 252.90 
3 28.54 2.40 35.02 46.38 45.01 252.50 
4 25.59 2.31 36.34 43.04 48.77 252.90 
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Figure 1 

Average Transaction Price vs. State Dependence Level 
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 Figure 2 
Fitted Densities for Shedd’s and ICBINB Brand coefficients (Margarine) 
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Figure 3 
Fitted Densities for Price and State Dependence Coefficients (Margarine) 
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Figure 4 
Fitted Densities for 96 oz Minute Maid and 64 oz Tropicana Brand coefficients (Orange 

Juice) 

-5 0 5 10

0.
00

0.
10

0.
20

96 oz MM

1 comp
2 comp
5 comp

-2 0 2 4 6 8 10

0.
00

0.
15

0.
30

64 oz Prem Trop

1 comp
2 comp
5 comp

 
 



 48

Figure 5 
Fitted Densities and 95% Posterior Credibility Regions for the Money-metric State 

Dependence Premium in dollars (Margarine) 
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Figure 6 
Fitted Densities and 95% Posterior Credibility Regions for the Money-metric State 

Dependence Premium in dollars (Orange Juice) 
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