Nonlinear Pricing without Single Crossing

Dmitri Blueschke\(^*\) Guilherme Freitas\(^†\) Martin Szydlowski\(^‡\) Nan Yang\(^§\)

\(^*\) Klagenfurt University
\(^†\) California Institute of Technology
\(^‡\) Northwestern University
\(^§\) VU University Amsterdam & Tinbergen Institute

ICE2009, Aug 12th
OUTLINE

1. **Non-Linear Pricing in Monopoly Market**

2. **An Example With Single Crossing**

3. **An Example Without Single Crossing**

4. **Numerical Explorations**
 - Non-Uniform Distribution of Types
 - Two Dimensional Types
1. **Non-Linear Pricing in Monopoly Market**

2. **An Example with Single Crossing**

3. **An Example without Single Crossing**

4. **Numerical Explorations**
 - Non-Uniform Distribution of Types
 - Two Dimensional Types
General Setup

- A continuum of consumer with type $\theta \in \Theta$.
- Consumer with type θ values quantity q by $v(q, \theta)$.
- Monopolist, without being able to observe consumers’ types, charges nonlinear tariff $t(q)$.
- Monopolist’s cost function $C(q)$.

With Revelation Principle, monopolist solve the following problem

\[
\begin{align*}
\text{maximize}_{q,t} & \quad \int_{\theta}^{\bar{\theta}} t(\theta) - C(q(\theta))dF(\theta) \\
\text{subject to} & \quad v(q(\theta), \theta) - t(\theta) \geq 0 \quad \forall \theta \in \Theta \ (\text{IR}) \\
& \quad v(q(\theta), \theta) - t(\theta) \geq v(q(\theta'), \theta) - t(\theta') \quad \forall \theta, \theta' \in \Theta \ (\text{IC})
\end{align*}
\]
Definition: v_q monotonic in types θ. What does it mean?

- Ordering of demands.
- Incentive to lie “downwards”.
- Local incentive constraints imply global incentive constraints (F.O.C. is valid).
Definition: v_q monotonic in types θ. What does it mean?

- Ordering of demands.
- Incentive to lie “downwards”.
- Local incentive constraints imply global incentive constraints (F.O.C. is valid).
1. Non-Linear Pricing in Monopoly Market

2. An Example With Single Crossing

3. An Example Without Single Crossing

4. Numerical Explorations
 - Non-Uniform Distribution of Types
 - Two Dimensional Types
Values: \(v(q, \theta) = \theta \sqrt{q} \), with \(\theta \sim U[2, 3] \) and \(q \geq 0 \).

Cost: \(C(q) = cq \), \(c > 0 \).

Tariff: \(t \geq 0 \).

\[
\begin{align*}
\text{maximize}_{q,t} & \quad \int_2^3 t(\theta) - C(q(\theta))dF(\theta) \\
\text{subject to} & \quad v(q(\theta), \theta) - t(\theta) \geq 0 \quad \forall \theta \text{ (IR)} \\
& \quad v(q(\theta), \theta) - t(\theta) \geq v(q(\theta'), \theta) - t(\theta') \quad \forall \theta, \theta' \text{ (IC)}
\end{align*}
\]
AN EXAMPLE WITH SINGLE CROSSING

- **Values:** \(v(q, \theta) = \theta \sqrt{q} \), with \(\theta \sim U[2, 3] \) and \(q \geq 0 \).
- **Cost:** \(C(q) = cq \), \(c > 0 \).
- **Tariff:** \(t \geq 0 \).

\[
\begin{align*}
\text{maximize}_{q,t} & \quad \int_2^3 t(\theta) - C(q(\theta))dF(\theta) \\
\text{subject to} & \quad v(q(\theta), \theta) - t(\theta) \geq 0 \quad \forall \theta \text{ (IR)} \\
& \quad v(q(\theta), \theta) - t(\theta) \geq v(q(\theta'), \theta) - t(\theta') \quad \forall \theta, \theta' \text{ (IC)}
\end{align*}
\]
Numerical Approach

We solve this constrained maximization problem numerically.

1. Discretize type space with N grid points, $\theta \in \{\theta_1, \ldots, \theta_N\}$.

2. Reformulate the original problem to the discretized problem

 $\maximize_{q,t} \quad \frac{1}{N} \sum_{i=1}^{N} t(\theta_i) - C(q(\theta_i))$

 subject to

 $v(q(\theta_i), \theta_i) - t(\theta_i) \geq 0 \quad \forall i \ (\text{IR})$

 $v(q(\theta_i), \theta_i) - t(\theta_i) \geq v(q(\theta_j), \theta_i) - t(\theta_j) \quad \forall i, j \ (\text{IC})$

3. Use KNITRO Active Set Algorithm to solve the discretized problem.

4. Increase N to improve the approximation.
Figure: $v(q, \theta)$ under different discretization schemes
Figure: $q(\theta)$ under different discretization schemes
Solutions

Figure: Approx. error for $q(\theta)$ under different discretization schemes
OUTLINE

1. Non-Linear Pricing in Monopoly Market

2. An Example with Single Crossing

3. An Example Without Single Crossing

4. Numerical Explorations
 - Non-Uniform Distribution of Types
 - Two Dimensional Types
An Example Without Single Crossing

- Values: \(v(q, \theta) = \theta q - \theta^2 q^2 \), with \(\theta \sim U[2, 3] \) and \(q \geq 0 \).
- Cost: \(C(q) = 3q^2 \), \(c > 0 \).
- Tariff: \(t \geq 0 \).

\[
\begin{align*}
\text{maximize}_{q,t} & \quad \int_2^3 t(\theta) - C(q(\theta))dF(\theta) \\
\text{subject to} & \quad v(q(\theta), \theta) - t(\theta) \geq 0 \quad \forall \theta \\
& \quad v(q(\theta), \theta) - t(\theta) \geq v(q(\theta'), \theta) - t(\theta') \quad \forall \theta, \theta'
\end{align*}
\]
AN EXAMPLE WITHOUT SINGLE CROSSING

- Values: $v(q, \theta) = \theta q - \theta^2 q^2$, with $\theta \sim U[2, 3]$ and $q \geq 0$.
- Cost: $C(q) = 3q^2$, $c > 0$.
- Tariff: $t \geq 0$.

$$\begin{align*}
\text{maximize}_{q,t} & \quad \int_2^3 t(\theta) - C(q(\theta))dF(\theta) \\
\text{subject to} & \quad v(q(\theta), \theta) - t(\theta) \geq 0 \quad \forall \theta \\
& \quad v(q(\theta), \theta) - t(\theta) \geq v(q(\theta'), \theta) - t(\theta') \quad \forall \theta, \theta'
\end{align*}$$
SOLUTIONS

Discret: 0.5000 Profit: 0.200057

- Quantity
- Tariff
- Profit
- Utility
SOLUTIONS

Discret: 0.1000 Profit: 0.200376

Types θ

<table>
<thead>
<tr>
<th>Discret</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.200376</td>
</tr>
</tbody>
</table>

quantity
tariff
profit
utility

Types θ

<table>
<thead>
<tr>
<th>2.0</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
<th>2.8</th>
<th>3.0</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Non-Linear Pricing Single Crossing No Single Crossing Extensions
Solutions

Discret: 0.0800 Profit: 0.200316

- Type θ
- Quantity
- Tariff
- Profit
- Utility

Types θ
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Discret: 0.0800 Profit: 0.200316

- Quantity
- Tariff
- Profit
- Utility
SOLUTIONS
Solutions

Discret: 0.0400 Profit: 0.200284
SOLUTIONS

Discret: 0.0200 Profit: 0.195707

- quantity
- tariff
- profit
- utility

Types θ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Quantity: 20 / 41
Solutions

Discret: 0.0100 Profit: 0.191614

Types θ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Quantity
tariff
profit
utility

Types θ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Solutions
2.6 Conclusion

In our model of nonlinear pricing without the Spence and Mirrlees condition, we showed that the basic assumption of the demand profile approach may not be valid and that the demand profile approach can lead to a suboptimal solution for the monopolist's optimization problem.
Outline

1. Non-Linear Pricing in Monopoly Market

2. An Example With Single Crossing

3. An Example Without Single Crossing

4. Numerical Explorations
 - Non-Uniform Distribution of Types
 - Two Dimensional Types
Non-Uniform Distribution of Types

Experiments: Variations of Uniform Discretization

- More mass (grid points) near the beginning.
- More mass near the end.
- More mass at both ends.
- More mass in the middle.
IMPLEMENTATION

- coarse grid distance 0.04, fine grid distance 0.02.
- 64 - 76 variables, 1024 - 1444 constraints
- Multistart option - 100 runs
- KNITRO with Active Set algorithm
- Best solution chosen
General findings

- Similar total profit.
- Similar pooling equilibrium near the end.
- Non-monotonic $q - \theta$ relationship near the beginning.
- Monotonic $u - \theta$ relationship.
NON-UNIFORM DISCRETIZATION OF TYPES

Figure: \(q(\theta) \) for different distributions of types
Non-Uniform Discretization of Types

Figure: $T(q(\theta))$ for different distributions of types
Non-Uniform Discretization of Types

Figure: $T(q(\theta)) - C(q(\theta))$ for different distributions of types
Non-Uniform Discretization of Types

Figure: $v(q(\theta), \theta) - T(q(\theta))$ for different distributions of types
TWO DIMENSIONAL TYPES

- Similar setup
- Values: \(v(q, \theta) = \theta q - \theta^2 q^2 \), with \(\theta \sim U[2, 3] \) and \(q \geq 0 \).
- But now: \(v(q, a, b) = aq - bq^2 \) with \((a, b) \sim U[2, 3]^2 \)
- Implications:
 - No single crossing again
 - Utility not monotone in types
 - Representation results do not hold - no analytical solution
NON-LINEAR PRICING

SINGLE CROSSING

NO SINGLE CROSSING

EXTENSIONS

UTILITY FUNCTIONS

FIGURE: Utility
BENCHMARK: FULL INFORMATION

- Principal maximizes social surplus
- ...and takes it all.

Figure: Optimal Supply Schedule
Larger Dimension (d’oh!)
- Number of possible policies explodes
- Cannot rely on local incentive compatibility
- Number of IC constraints explodes

Small feasible region relative to action space
- Hard to find a feasible starting point
- Algorithm often gets stuck
49 grid points
KNITRO with Active Set algorithm
98 variables, 2401 constraints
Multistart option - 50 runs
Best solution chosen
AMPL Output

Final objective value: \(1.88400489913399 \times 10^1 \)

Final feasibility error (abs / rel): \(5.50 \times 10^{-13} / 7.00 \times 10^{-14} \)

Final optimality error (abs / rel): \(1.01 \times 10^{-08} / 5.78 \times 10^{-09} \)

When things go well:

| Iter | Objective | FeasError | OptError | ||Step|| CGits |
|------|-----------|-----------|----------|----------|-------|
| 446 | 1.883564e+01 | 3.600e-08 | 6.101e-01 | 3.056e-02 | 2 |
| 447 | 1.883601e+01 | 3.324e-10 | 6.422e-01 | 1.910e-03 | 6 |
| 448 | 1.883670e+01 | 1.220e-09 | 5.466e+00 | 5.759e-03 | 1 |
| 449 | 1.883723e+01 | 5.542e-09 | 1.527e+00 | 5.040e-03 | 4 |
| 450 | 1.883764e+01 | 9.788e-11 | 6.268e-01 | 5.039e-03 | 1 |
| 451 | 1.883828e+01 | 4.610e-09 | 3.196e-02 | 8.818e-03 | 3 |
| 452 | 1.883923e+01 | 1.554e-08 | 3.980e-02 | 1.764e-02 | 1 |
| 453 | 1.883979e+01 | 1.669e-08 | 4.290e-02 | 1.764e-02 | 1 |
| 454 | 1.883992e+01 | 2.584e-08 | 2.794e-02 | 1.180e-02 | 5 |
| 455 | 1.884004e+01 | 2.525e-08 | 2.867e-02 | 1.179e-02 | 2 |
| 456 | 1.884005e+01 | 8.475e-10 | 1.118e-02 | 4.480e-03 | 9 |
| 457 | 1.884005e+01 | 4.582e-12 | 3.906e-05 | 1.363e-05 | 7 |
| 458 | 1.884005e+01 | 2.220e-15 | 9.310e-08 | 2.196e-08 | 6 |
When Things Go Bad

| Iter | Objective | FeasError | OptError | ||Step|| | CGits |
|------|-----------|-----------|----------|----------|----------|-------|
| 0 | -4.821871e+01 | 1.046e+01 | | | | |
| 1 | -6.597676e+00 | 5.046e+00 | 9.596e+03 | 6.716e+00 | 2 | |
| 2 | 6.938318e+00 | 4.733e+00 | 1.434e+05 | 9.334e+00 | 1 | |
| 3 | -5.364320e+01 | 3.293e+00 | 7.311e+04 | 1.598e+01 | 2 | |
| 4 | -7.743043e+01 | 1.711e+00 | 1.033e+05 | 6.115e+00 | 1 | |
| 5 | -5.054798e+01 | 1.481e-01 | 1.386e+02 | 2.865e+00 | 0 | |
| 6 | -4.105956e+01 | 7.316e-02 | 4.901e+01 | 8.087e-01 | 0 | |
| 7 | -3.547193e+01 | 1.743e-02 | 1.398e+01 | 4.493e-01 | 1 | |
| 8 | -3.303212e+01 | 4.191e-03 | 1.466e+01 | 2.151e-01 | 2 | |
| 9 | -3.110397e+01 | 5.802e-03 | 2.018e+01 | 2.646e-01 | 1 | |
| 10 | -2.808023e+01 | 2.913e-04 | 9.807e+00 | 2.665e-01 | 2 | |
| 11 | -2.663157e+01 | 5.511e-05 | 1.125e+01 | 1.436e-01 | 2 | |
| 12 | -2.593095e+01 | 1.710e-05 | 4.918e+01 | 7.349e-02 | 2 | |
| 13 | -2.591876e+01 | 1.687e-05 | 4.895e+00 | 1.148e-03 | 3 | |
| 14 | -2.591589e+01 | 9.421e-06 | 8.968e+00 | 2.871e-04 | 8 | |
| 15 | -2.590045e+01 | 3.179e-08 | 9.182e+00 | 1.426e-03 | 1 | |
| 16 | -2.590009e+01 | 3.119e-08 | 1.756e+00 | 4.975e-05 | 1 | |
| 17 | -2.589618e+01 | 7.424e-09 | 4.210e+00 | 3.809e-04 | 1 | |
| 18 | -2.589618e+01 | 2.366e-09 | 8.687e+00 | 1.387e-04 | 3 | |
| 19 | -2.589313e+01 | 2.970e-09 | 3.071e+00 | 2.774e-04 | 1 | |
| 20 | -2.588970e+01 | 4.187e-09 | 3.685e+00 | 3.334e-04 | 1 | |
| 21 | -2.588957e+01 | 4.226e-09 | 1.428e+00 | 1.248e-05 | 1 | |
| 22 | -2.588956e+01 | 4.412e-09 | 2.508e-02 | 5.990e-07 | 1 | |
MORE GRAPHS!

Figure: Optimal Supply Schedule with Types
Figure: Supply w. Types vs Supply with full info
SENSE AND SENSITIVITY

Figure: Type (2.6,2.6) - sample IC constraint
Figure: Slack in IR constraint by type (mind the supply distortion!)