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Perspective

| am a user of AD tools, not a developer

This presentation is a "lab report" on the turn of event®feihg a presentation at
the Society for Computational Economics

| hope some of my mistakes make for useful lessons



Mistake Number 1
It's "automatic" isn't it?

Well, you get to do some amazing stuff with AD, but "automatreght be a
stretch.

It seems obvious, but are you sure that the code for yourifumi differentiable?

This might be trickier to ascertain than you might think attfeend might not be
picked up by your AD tool



Mistake Number 1 (continued)

A composition of functions might be differentiable evenhétunderlying
functions are not

As a simple example think of adding two functions with petifesymmetric
kinks. Their sum is differentiable but the original functgare not

This kind of problem seems pervasive when relying on somencommatrix
decompositions (SVD, Eigenvalue/Eigenvector decomiaogit



Mistake Number 2

The simplest code to write is the faster to differentiate

Not when it involves, for example, imaginary numbers

You might be better off rewriting your code than struggliogihderstand what is
stumping your AD tool



Mistake Number 3
Dual language programming makes your life easy

Well, at times, but you might be much better off sticking te&edanguage only, as
most AD tools handle gracefully only one language

Grandiose plans of differentiating separately the diffiéeparts of the code with a
“Black Box” approach can slow you down more than you think

Most tools don’t have extensive documentation and revenggneering the
calling structure of intermediate functions can be quitafoh



Mistake Number 4

So what if my function calls all sorts of LAPACK and BLAS ronés?

Surely someone has else differentiated them.

Well, not yet.



Which tool to pick?
Fortunately for users, several options exist for variougypamming languages

When choosing between alternatives, take a good look atdtendentation that
IS shared

Sooner or later, the tool you are using will have trouble sligg some of the
code you intend to differentiate

Chances are you’ll be scouring the manuals then

If you are starting off, it might pay to pick a well documentedl, even if it is not
the most efficient



What's next?

An example of the use of Automatic Differentiation

SDGE Estimation Made Easier

(preliminary joint work with Gary Anderson and Houtan Bas}a



What do we do?

We build the score and information matrix for the likelindohction of a
dynamic general equilibrium model using automatic differ@ion techniques.

As a byproduct, we compute the first and second derivativedifced-form
parameters in the solution of a SDGE model with respect téuheéamental
parameters.

Our toolbox is applicable to linear and linearized models.

Through Monte Carlo experiments, we show that finding theimarn of the
likelihood of several (two, at the moment) SDGE models isatyefacilitated by
more precise computation of the information matrix.

Higher precision in the information matrix also facilitateizing asymptotic
standard errors for maximum likelihood estimates.
10



Finite Difference Derivatives

Analytical derivatives are only available for special caséthe models we are
Interested in. Limitation is on the number of state variable

The macroeconometrics literature has relied on finite diffee methods to obtain
the Jacobian. The Broyden updating algorithm is typicaflgdifor the Hessian.

The error bounds for FD derivatives depend on the size ofdnighrivatives.

In practice, choice of step size can dramatically affectrédsailts. (Will provide
examples.)
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Key Elements of Solving a Model Under Rational Expectations

Upon linearization, any SDGE model can be written as:

B Xyqq
H(0) X, = 0.
X¢—1

The model’s solution takes the form:
Xy = S(H())X¢—1,

Partitioning X; such thatX; = ( ft ) yields
'

v = A(H(0))xi—1 + B(H(0))e:-
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The Likelihood Function

Given a subset of the entries:n as observable, call these entrigs the
state-space representation of the system takes the form:

vy = A(H(0))z—1 + B(H(0))eq
yr = Cxy

Using the Kalman Filter, we can express the likelihood figrctor the model as:
L =L(A(0),B@#),C,y;_p,-..,yr) Wherey,_; andy; are respectively the
first and last observation points available.

d82L

Our routines produc%% and>-7 .

As an intermediate product, our routines yield first and sdaterivatives ofd

and B wrt 6.
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Computational choices
AIM algorithm, as detailed in Anderson (1987).

Anderson showed a roadmap to build the jacobian and hesktha solution for
a linear model.

Automatic differentiation facilitates the implementatiof Gary’s algorithm.
Kalman filter with training, as detailed in Hamilton, or Durland Koopman.

— Plan to add menu of choices for initialization
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Implementation Details

We used Tapenade in vector mode.

Tapenade required limited manual intervention on our R&etmarkable, given
code consisted of 80 subroutines for a total of over 17,085I(56 kb)

The derivative-augmented code produced by Tapenade cappreximately
25,000 lines (78 kb).

The original code was written in a mixture of C and Fortran [Z&Zpack and Blas
routines).

15



Blas Functions

daxpy.f dcopy.f ddot.f dgemm.f dgemv.f dger.f
dnrm2.f  drot.f dscal.f  dswap.f dtrmm.f dtrmv.f
dtrsm.f

Lapack Functions
dgebak.f dgebal.f dgeesx.f dgehd2.f dgehrd.f dgeqp3.f
dgeqr2.f dgeqrf.f dgesv.f dgetf2.f dgetrf.f dgetrs.f
dhseqr.f dlacn2.f dlacpy.f dladiv.f dlaexc.f dlahqgr.f
dlanhr2.f dlaln2.f dlange.f dlanv2.f dlapy2.f dlagp2.f
dlagps.f dlaqrO.f dlaqgrl.f dlagr2.f dlaqr3.f dlagr4.f
dlagr5.f dlarfb.f dlarf.f dlarfg.f  dlarft.f  dlarfx.f
dlartg.f dlascl.f dlaset.f dlassq.f dlaswp.f dlasy2.f
dorg2r.f dorghrf dorggr.f dorm2rf dormgr.f dtrexc.f
dtrsen.f  dtrsyl.f  dtrtrs.f
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Testing Tapenade’s output

Two decompositions in the model solution, the real Schuodgaosition and the
singular-value decomposition, are not always unique.

Restrictions on model features could ensure uniqueness Sod SVD
decompositions. We verified that Tapenade derivativesfeadisome basic
analytical properties but our test failed for models imptynon-unigueness of
the Schur and SVD decompositions.

17



The Real Schur Decomposition

We relied on the Lapack routine DGEESX to implement the reaus
decomposition.

For a given real matrixy , this decomposition produces a unitary matkix, such
that?T = X* EX is block triangular.

. . H
sinceXunitary, XX = X XH = 0. Then?X" x + x2X" — 0.

This property failed to be met by our AD derivatives when duwice of E
implied a non-unigue Schur decomposition.

We substituted the AD derivative for the DGEESX routine witie analytical
derivative of the Schur decomposition as outlined in Anders987.
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The Singular Value Decomposition

We relied on the DGESVD routine in the Lapack library to impént the
singular value decomposition

Given a real matrixz , produces unitary matricéds andl” and a diagonal matrix
D, suchthatf = UDV ! .

leenagj thenUT Cv =uT% D+ 90 + pIVY , where?? is diagonal
andU 95 and 9 V are both antlsymmetnc

Our AD derivative of the routine DGESVD failed to satisfysimroperty when the
matrix £ had repeated singular values (making the decompositiorunaue).

We substituted our AD derivative with the analytical detiva derived by
Anderson 1987.
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Testing the Tapenade Output

For special cases of our model that could be simplified we atetpanalytical
derivatives and found them in agreement with our AD densi

To test the derivatives for more complex models that we caaldsolve
analytically, we relied on comparisons with centered FDOvadives.

Generally with a step size df0—® we found broad agreement between our AD

derivatives and FD first derivatives. For second derivatimeatching is
conditional on ad hoc choice of step size.
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Do AD derivatives improve the quality of ML estimates?

Use two SDGE models to investigate this question.

1) simple RBC model with log utility and fixed labor

2) variant of Smets-Wouters model
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RBC model

max_ i Bt 1og(ct)
t=0

Ctskp41,0t
+B" et [€kf — ¢ — if]
+8"y: [(1 = 0)ke + it — kyy1]
wherelog(z;) = p.109(z;_1) + ozt ande; ~ NID

This is incredibly simple, but deceptively tough to estienaith limited data.

Following Uhlig’s toolbox paper, we can use simple symbdliterentiation to
check the AD derivatives.
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Monte Carlo Experiment
Calibrate model in a standard way.

Generate 100 repetitions of 200 observations for quartkatg for one observed
series:cy.

For each repetition of the data, estimate 4 parameters ohttel: o, 6, p2, €-.
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Optimization Algorithm

Our maximum likelihood estimates were constructed usiegMIATLAB
optimization routine FMINUNC. Boundaries are imposed véatiimple penalty
function.

Very similar results obtained using unconstrained optatan algorithm in NAG
library

When the optional argument “LargeScale” is set to “ON” aaatiof a
Newton-Raphson algorithm that takes as inputs the jacamdrHessian

When “LargeScale” is set to “OFF”, FMINUNC imputes the Jaeobwith FD
methods and the Hessian with Broyden’s algorithm.

Algorithm requires initial point to conduct search.
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Initialization Points

Parameter values used in the data-generating process:

@ 5 Pz O~

0.3 0.025 0.95 04

Consider 2 alternative choices for initial point for search

1) start close to true value for the parameters to be esttnate

Q ) Pz Oz

0.3 0.05 0.8 0.3

2) start away from the true values

Q 0 pz Oz

05 03 01 0.2
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Distribution of difference of maximum of log-likelihood found with and without AD derivatives

Starting near truth
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Distribution of difference of maximum of log-likelihood found with and without AD derivatives

Starting away from truth
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Sampling Distributions of Parameter Estimates,
Conditioning on Finding higher Likelihood
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A much larger model

The Households in the model solve;:

max E jUC'h,C - (h
[Co(h), Wi(h). I (h) K1 (1), Bygr (1) ’fjgoﬁ (U(Ctj(h), Crgj—1 (1))

+V (Ligj(h))) 4 B X (R) [Me(h) 4+ Tiqj(h) + (1 — 7)) Wigj (h) Ly
(It—l—j(h) - It—|—j—1(h)>2

Iy j—1(h)
— Py jCiyj(h) — Py Iy ;(h) — /Swt+j+1,t+j3t+j+1(h) + Bt—l—j(h)]
+67 Q4 (h) |(1 = 8)Kyqj(h) + Ly j(h) — Ky i1 (W)

1
T = 7k By j Kyt (h) — SrPiy
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Model Description (continued)

Final production

1 1 0
Y; = [ | Y= (1)
Intermediate prodution
Yi(f) = e K (HLEHT . 2)
where technology is given by
109(Z;) = p2109(Zt—1) + 0z€24, (3)

Finally, the government sector sets a nominal risk-freeradt rate according to
the reaction function:

i = % — 1+ va(my — ) + vy (log(Yy) — log(Yi—1) + €4t (4)
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The government budget constraint is

TWiLly + T R Kt = Gt + 1. (5)

we introduce shocks to labor taxes, capital taxes and gmamnhspending.



Monte Carlo Experiments

Generate 100 repetitions of 200 observations for quartiats for four observed
series: gdp growth, inflation, wage inflation, policy in&reate

Estimate 6 parameters of the model keeping all other paeamat their value in
the data-generating process.

- Autoregressive coefficient on technology shock, and stethdeviation of inno-
vation.

- Weights on inflation and output growth in the interest ra@ction function.

- Calvo parameters for wages and prices.
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Initialization point

Truth
Initial Pt

Pz Oz Y Yy ¢p ¢w
0.95 0.1125 15 05 0.75 0.75

0.6 0.4 3 015 05 0.5
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Distribution of difference of maximum of log-likelihood found with and without AD derivative:

Starting away from truth
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Sampling Distribution of Parameter Estimates
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Related Papers

Anderson G (1987) sketches an algorithm to obtain the soiwif the linear
approximation of a SDGE model and its first and second derest

Anderson E, Hansen, McGrattan, and Sargent (1996) compungdgtical first
derivative of the solution of a SDGE model.

Bastani Guerrieri (2008) builds the first derivative for tikelihood of a SDGE

model with AD tools and documents some advantages for ngaienptimization
of the likelihood.

Iskrev (2008) focuses on the use of the information matrsttmly identification.
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Conclusion

We showed that the use of AD derivatives facilitates thavesgion of a DGE
model

Apart from speed gains, the accuracy gains over FD deresitead to higher
convergence rates of commonly used optimization algostand more reliable
measures of the asymptotic standard errors

Other applications include:
— checks on local identification
— gauging the importance of priors in Bayesian estimation

— facilitating the implementation of the Metropolis Hagfgalgorithm
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