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Overview

We focus on how to get the most out of your optimizer(s):
1. Scaling

Initial Guess

Solver Options

Gradients & Hessians

Dangers with Hessians

Validation

Diagnosing Problems

Ipopt
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Scaling

Scaling can help solve convergence problems:
» Naive scaling: scale variables so their magnitudes are ~ 1
» Better: scale variables so solution has magnitude ~ 1

» A good solver may automatically scale the problem



Computing an Initial Guess

Computing a good initial guess is crucial:
» To avoid bad regions in parameter space
» To facilitate convergence
» Possible methods:

» Use a simpler but consistent estimator such as OLS

» Estimate a restricted version of the problem

» Use Nelder-Mead or other derivative-free method (beware of
fminsearch)

» Use Quasi-Monte Carlo search

» Beware: the optimizer may only find a local max!



Explore Your Objective Function

Visualizing your objective function will help you:
» Catch mistakes
» Choose an initial guess

» Determine if variable transformations, such as log or x' = 1/x,
are helpful

Some tools:

» Plot objective function while holding all variables except one
fixed

» Explore points near and far from the expected solution
» Contour plots may also be helpful

» Hopefully, your function is convex...



Solver Options

A state of the art optimizer such as knitro is highly tunable:
» You should configure the options to suit your problem: scale,
linear or non-linear, concavity, constraints, etc.
» Experimentation is required:

Algorithm: Interior/CG, Interior/Direct, Active Set
Barrier parameters: bar_murule, bar_feasible
Tolerances: X, function, constraints

Diagnostics
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» See Nocedal & Wright for the gory details of how optimizers
work



Which Algorithm?

Different algorithms work better on different problems:
Interior/CG

v

Direct step is poor quality
There is negative curvature
Large or dense Hessian

vy

Interior /Direct

v

[ll-conditioned Hessian of Lagrangian
Large or dense Hessian
Dependent or degenerate constraints

vy

Active Set

» Small and medium scale problems
» You can choose a (good) initial guess

The default is that knitro chooses the algorithm.
= There are no hard rules. You must experiment!!!



Knitro Configuration

Knitro is highly configurable:
» Set options via:

» C, C++, FORTRAN, or Java API
» MATLAB options file

» Documentation in
${KNITRO _DIR}/Knitro60 UserManual.pdf

» Example options file in
${KNITRO _DIR}/examples/Matlab/knitro.opt



Calling Knitro From MATLAB

To call Knitro from MATLAB:
1. Follow steps in InstallGuide.pdf | sent out
2. Call xtrlink:

% Call Knitro

[ xOpt, fval, exitflag, output, lambda ] = ktrlink( ...
Q@(xFree) myLoglLikelihood( xFree, myData ), e
xFree, [1, [1, [0, [0, 1b, ub, [1, [J, ’knitro.opt’ )

% Check exit flag

if exitflag <= -100 | exitflag >= -199
% Success

end

» Note: older versions of Knitro modify fmincon to call ktrlink

» Best to pass options via a file such as 'knitro.opt’



Listing 1: knitro.opt Options File

# KNITRO 6.0.0 Options file
# http://ziena.com/documentation.html

# Which algorithm to use.

# auto = 0 = let KNITRO choose the algorithm

# direct = 1 = use Interior (barrier) Direct algorithm
# cg = 2 = use Interior (barrier) CG algorithm

# active = 3 = use Active Set algorithm

algorithm 0

# Whether feasibility is given special emphasis.
# no = 0 = no emphasis on feasibility

# stay = 1 = iterates must honor inequalities
# get = 2 = emphasize first getting feasible before
# get stay = 3 = implement both options 1 and 2 above

bar feasible no

# Which barrier parameter update strategy.
auto =0 = let KNITRO choose the strategy
monotone = 1
adaptive = 2
probing =3
dampmpc = 4
fullmpec =5
quality =6

ar_murule aut
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# Initial trust region radius scaling factor, used to determine
# the initial trust region size.
delta 1

# Specifies the final relative stopping tolerance for the feasibil
# error. Smaller values of feastol result in a higher degree of ac
# in the solution with respect to feasibility.

feastol le—06

# How to compute/approximate the gradient of the objective
# and constraint functions.

# exact = 1 = user supplies exact first derivatives

# forward = 2 = gradients computed by forward finite differ
# central = 3 = gradients computed by central finite differ
gradopt exact

# How to compute/approximate the Hessian of the Lagrangian.

# exact = 1 = user supplies exact second derivatives

# bfgs = 2 = KNITRO computes a dense quasi—Newton BFGS
# srl = 3 = KNITRO computes a dense quasi—Newton SR1 H
# finite diff = 4 = KNITRO computes Hessian—vector products by
# product = 5 = user supplies exact Hessian—vector products
# Ibfgs = 6 = KNITRO computes a limited —memory quasi—Newt
hessopt exact



# Whether to enforce satisfaction of simple bounds at all iteratio

# no = 0 = allow iterations to violate the bounds

# always = 1 = enforce bounds satisfaction of all iterates
# initpt = 2 = enforce bounds satisfaction of initial point
honorbnds initpt

# Maximum number of iterations to allow

# (if 0 then KNITRO determines the best value).

# Default values are 10000 for NLP and 3000 for MIP.
maxit 0

# Maximum allowable CPU time in seconds.
# If multistart is active, this limits time spent on one start poi
le+08

# Specifies the final relative stopping tolerance for the KKT (op
# error. Smaller values of opttol result in a higher degree of acc
# the solution with respect to optimality.

opttol le—06

# Step size tolerance used for terminating the optimization.
xtol le—15 # Should be sqrt( machine epsilon )



Numerical Gradients and Hessians Overview

Gradients and Hessians are often quite important:

v

Choosing direction and step for Gaussian methods
» Evaluating convergence/non-convergence

» Estimating the information matrix (MLE)

> Note:

> Solvers need accurate gradients to converge correctly
» Solvers do not need precise Hessians
» But, the information matrix does require accurate computation

v

Consequently, quick and accurate evaluation is important:

» Hand-coded, analytic gradient/Hessian
» Automatic differentiation
» Numerical gradient/Hessian



Forward Finite Difference Gradient

function [ fgrad ] = NumGrad( hFunc, x0, xTol )
x1 = x0 + xTol ;
f1 feval( hFunc, x1 ) ;
f0 feval( hFunc, x0) ;
fgrad = ( f1 - f0 ) / ( x1 - x0 ) ;



Centered Finite Difference Gradient

function [ fgrad ] = NumGrad( hFunc, x0, xTol )
x1 = x0 + xTol ;
x2 2 x x0 - x1 ;
f2 = feval( hFunc, x2 ) ;
fgrad = ( f1 - £2 ) / (x1 - x2 ) ;



Complex Step Differentiation
Better to use CSD whose error is O(h?):

function [ vCSDGrad ] = CSDGrad( func, x0, dwStep )
nParams = length( x0 ) ;
vCSDGrad = zeros( nParams, 1 ) ;
if nargin < 3

dx = le-5 ;
else

dx = dwStep ;
end

xPlus = x0 + 1i * dx ;
for ix = 1 : nParams

x1 = x0 ;

x1( ix ) = xPlus( ix ) ;

[ fval ] = func( x1 ) ;

vCSDGrad( ix ) = imag( fval / dx ) ;
end



CSD vs. FD vs. Analytic

The official word from Paul Hovland (Mr. AD):
» AD or analytic derivatives:
> ‘Best’
» Hand-coding is error-prone
» AD doesn't work (well) with all platforms and functional forms

» CSD

» Very accurate results, especially with h ~ 1e — 20 or 1e — 30
because error ~ O (h2)

» Cost > FD
» Some FORTRAN and MATLAB functions don’t work correctly

» FD: ‘Idiotic’ — Munson



CSD Hessian

function | f{dHess | = CSDHessian( func, x0, dwStep )
nParams = length( x0 ) ;
fdHess = zeros( nParams ) ;
for ix = 1 : nParams
xImagStep = x0 ;
xImagStep( ix ) = x0( ix ) + 1i * dwStep ;
for jx = ix : nParams
xLeft = xImagStep ;
xLeft( jx ) = xLeft( jx ) - dwStep ;
xRight = xImagStep ;
xRight( jx ) = xRight( jx ) + dwStep ;
vLeftGrad = func( xLeft ) ;
vRightGrad = func( xRight ) ;
fdHess( ix, jx ) = imag( ( vRightGrad ...
- vLeftGrad ) / ( 2 * dwStep~2) ) ;
fdHess( jx, ix ) = fdHess( ix, jx ) ;
end
end



Overview of Hessian Pitfalls

‘The only way to do a Hessian is to do a Hessian' — Ken Judd
» The ‘Hessian' returned by fmincon is not a Hessian:

Computed by BFGS, srl, or some other approximation scheme
A rank 1 update of the identity matrix

Requires at least as many iterations as the size of the problem
Dependent on quality of initial guess, x0

Often built with convexity restriction
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» Therefore, you must compute the Hessian either numerically or
analytically

» fmincon's ‘Hessian’ often differs considerably from the true
Hessian — just check eigenvalues or condition number



Condition Number

Use the condition number to evaluate the stability of your problem:
max [eig (A)]

min [eig (A)]

> Large values = trouble

» cond (A) =

» Also check eigenvalues: negative or nearly zero eigenvalues =
problem is not concave

» If the Hessian is not full rank, parameters will not be identified



Estimating the Information Matrix

To estimate the information matrix:
1. Calculate the Hessian — either analytically or numerically
2. Invert the Hessian

3. Calculate standard errors

StandardErrors = sqrt( diag( inv( YourHessian ) ) ) ;

Assuming, of course, that your objective function is the likelihood...



Validation

Validating your results is a crucial part of the scientific method:

> Generate a Monte Carlo data set: does your estimation code
recover the target parameters?

» Test Driven Development:

1. Develop a unit test (code to exercise your function)

2. Write your function

3. Validate function behaves correctly for all execution paths
4. The sooner you find a bug, the cheaper it is to fix!!!

» Start simple: e.g. logit with linear utility

» Then slowly add features one at a time, such as interactions or
non-linearities

» Validate results via Monte Carlo

» Or, feed it a simple problem with an analytical solution



Diagnosing Problems

Solvers provide a lot of information to determine why your problem
can't be solved:

» Exit codes

» Diagnositic Output



Exit Codes

It is crucial that you check the optimizer's exit code and the
gradient and Hessian of the objective function:

» Optimizer may not have converged:

» Exceeded CPU time
» Exceeded maximum number of iterations

» Optimizer may not have found a global max
» Constraints may bind when they shouldn’t (A # 0)

» Failure to check exit flags could lead to public humiliation and
flogging



Diagnosing Problems

The solver provides information about its progress which can be
used to diagnose problems:

» Enable diagnostic output

» The meaning of output depends on the type of solver: Interior
Point, Active Set, etc.

» In general, you must RTM: each solver is different



Interpreting Solver Output
Things to look for:

» Residual should decrease geometrically towards the end
(Gaussian)
» Then solver has converged
» Geometric decrease follwed by wandering around:
> At limit of numerical precision

> Increase precision and check scaling

» Linear convergence:

> ||residual|| — 0: rank deficient Jacobian = lack of
identification
» Far from solution = convergence to local min of ||residual||

» Check values of Lagrange multipliers:

» lambda.{ upper, lower, ineqlin, eqlin, inegnonlin,
egnonlin }

» Local min of constraint = infeasible or locally inconsistent (IP)

» Non convergence: failure of constraint qualification (NLP)

» Unbounded: X or x — 400



lpopt

Ipopt is an alternative optimizer which you can use:

>
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Interior point algorithm

Part of the COIN-OR collection of free optimization packages
Supports C, C++, FORTRAN, AMPL, Java, and MATLAB
Can be difficult to build — see me for details
WWW.COIN-0r.0rg

COIN-OR provides free software to facilitate optimization
research



