Optimizers, Hessians, and Other Dangers

Benjamin S. Skrainka University College London

July 31, 2009

Overview

We focus on how to get the most out of your optimizer(s):

- 1. Scaling
- 2. Initial Guess
- 3. Solver Options
- 4. Gradients & Hessians
- 5. Dangers with Hessians
- 6. Validation
- 7. Diagnosing Problems
- 8. Ipopt

Scaling

Scaling can help solve convergence problems:

- lacktriangle Naive scaling: scale variables so their magnitudes are ~ 1
- lacktriangle Better: scale variables so solution has magnitude ~ 1
- ► A good solver may automatically scale the problem

Computing an Initial Guess

Computing a good initial guess is crucial:

- ▶ To avoid bad regions in parameter space
- ▶ To facilitate convergence
- Possible methods:
 - Use a simpler but consistent estimator such as OLS
 - Estimate a restricted version of the problem
 - Use Nelder-Mead or other derivative-free method (beware of fminsearch)
 - Use Quasi-Monte Carlo search
- ▶ Beware: the optimizer may only find a local max!

Explore Your Objective Function

Visualizing your objective function will help you:

- Catch mistakes
- Choose an initial guess
- ▶ Determine if variable transformations, such as log or x' = 1/x, are helpful

Some tools:

- Plot objective function while holding all variables except one fixed
- Explore points near and far from the expected solution
- Contour plots may also be helpful
- ► Hopefully, your function is convex...

Solver Options

A state of the art optimizer such as knitro is highly tunable:

- ➤ You should configure the options to suit your problem: scale, linear or non-linear, concavity, constraints, etc.
- Experimentation is required:
 - Algorithm: Interior/CG, Interior/Direct, Active Set
 - Barrier parameters: bar_murule, bar_feasible
 - ► Tolerances: X, function, constraints
 - Diagnostics
- See Nocedal & Wright for the gory details of how optimizers work

Which Algorithm?

Different algorithms work better on different problems:

Interior/CG

- Direct step is poor quality
- There is negative curvature
- Large or dense Hessian

Interior/Direct

- Ill-conditioned Hessian of Lagrangian
- ► Large or dense Hessian
- Dependent or degenerate constraints

Active Set

- Small and medium scale problems
- You can choose a (good) initial guess

The default is that knitro chooses the algorithm.

⇒ There are no hard rules. You must experiment!!!

Knitro Configuration

Knitro is highly configurable:

- Set options via:
 - ► C, C++, FORTRAN, or Java API
 - MATLAB options file
- ➤ Documentation in \${KNITRO_DIR}/Knitro60_UserManual.pdf
- ► Example options file in \${KNITRO_DIR}/examples/Matlab/knitro.opt

Calling Knitro From MATLAB

To call Knitro from MATLAB:

- 1. Follow steps in InstallGuide.pdf I sent out
- 2. Call ktrlink:

- ▶ Note: older versions of Knitro modify fmincon to call ktrlink
- Best to pass options via a file such as 'knitro.opt'

Listing 1: knitro.opt Options File

```
# KNITRO 6.0.0 Options file
# http://ziena.com/documentation.html
# Which algorithm to use.
#
    auto = 0 = let KNITRO choose the algorithm
  direct = 1 = use Interior (barrier) Direct algorithm
# cg = 2 = use Interior (barrier) CG algorithm
    active = 3 = use Active Set algorithm
algorithm
# Whether feasibility is given special emphasis.
#
    no = 0 = no emphasis on feasibility
  stay = 1 = iterates must honor inequalities
  get = 2 = emphasize first getting feasible before optimiz
    get stay = 3 = implement both options 1 and 2 above
bar feasible no
# Which barrier parameter update strategy.
#
    auto = 0 = let KNITRO choose the strategy
# monotone = 1
# adaptive = 2
# probing = 3
# dampmpc = 4
# fullmpc = 5
# quality = 6
bar murule auto
                                          4 D > 4 P > 4 B > 4 B > B 990
```

```
\# Initial trust region radius scaling factor, used to determine \# the initial trust region size. delta 1
```

Specifies the final relative stopping tolerance for the feasibil # error. Smaller values of feastol result in a higher degree of ac # in the solution with respect to feasibility. feastol 1e-06

```
\# How to compute/approximate the gradient of the objective \# and constraint functions. \# exact = 1 = \text{user supplies exact first derivatives} \# forward = 2 = \text{gradients computed by forward finite differ}
```

central = 3 = gradients computed by central finite differ gradopt exact

How to compute/approximate the Hessian of the Lagrangian. # exact =1= user supplies exact second derivatives # bfgs =2= KNITRO computes a dense quasi-Newton BFGS b

sr1 = 3 = KNITRO computes a dense quasi-Newton SR1 H # finite_diff = 4 = KNITRO computes Hessian-vector products by # product = 5 = user supplies exact Hessian-vector products

product = 5 = user supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products # lbfgs = 6 = KNITRO computes a limited-memory quasi-New to the supplies exact Hessian-vector products | lbfgs = 6 = KNITRO computes | lbfgs = 6 = KNITRO compu

hessopt exact

```
\# Whether to enforce satisfaction of simple bounds at all iteratio \# no =0= allow iterations to violate the bounds \# always =1= enforce bounds satisfaction of all iterates \# initpt =2= enforce bounds satisfaction of initial point honorbnds initpt
```

Maximum number of iterations to allow # (if 0 then KNITRO determines the best value). # Default values are 10000 for NLP and 3000 for MIP. maxit 0

Maximum allowable CPU time in seconds. # If multistart is active, this limits time spent on one start poi $1e{+}08$

Specifies the final relative stopping tolerance for the KKT (operator) # error. Smaller values of opttol result in a higher degree of accept the solution with respect to optimality.

Step size tolerance used for terminating the optimization. xtol 1e-15 # Should be sqrt (machine epsilon)

Numerical Gradients and Hessians Overview

Gradients and Hessians are often quite important:

- Choosing direction and step for Gaussian methods
- Evaluating convergence/non-convergence
- Estimating the information matrix (MLE)
- Note:
 - Solvers need accurate gradients to converge correctly
 - Solvers do not need precise Hessians
 - But, the information matrix does require accurate computation
- ► Consequently, quick and accurate evaluation is important:
 - ► Hand-coded, analytic gradient/Hessian
 - Automatic differentiation
 - Numerical gradient/Hessian

Forward Finite Difference Gradient

```
function [ fgrad ] = NumGrad( hFunc, x0, xTol )
x1 = x0 + xTol ;
f1 = feval( hFunc, x1 ) ;
f0 = feval( hFunc, x0) ;
fgrad = ( f1 - f0 ) / ( x1 - x0 ) ;
```

Centered Finite Difference Gradient

```
function [ fgrad ] = NumGrad( hFunc, x0, xTol )
  x1 = x0 + xTol ;
  x2 = 2 * x0 - x1 ;
  f2 = feval( hFunc, x2 ) ;
  fgrad = ( f1 - f2 ) / ( x1 - x2 ) ;
```

Complex Step Differentiation

Better to use CSD whose error is $O(h^2)$:

```
function [ vCSDGrad ] = CSDGrad( func, x0, dwStep )
  nParams = length(x0);
  vCSDGrad = zeros( nParams, 1 ) ;
  if nargin < 3
   dx = 1e-5:
  else
   dx = dwStep;
  end
  xPlus = x0 + 1i * dx;
  for ix = 1 : nParams
   x1 = x0:
    x1(ix) = xPlus(ix);
    [ fval ] = func( x1 );
    vCSDGrad( ix ) = imag( fval / dx );
  end
                                4□ > 4同 > 4 = > 4 = > ■ 900
```

CSD vs. FD vs. Analytic

The official word from Paul Hovland (Mr. AD):

- ► AD or analytic derivatives:
 - ▶ 'Best'
 - Hand-coding is error-prone
 - ▶ AD doesn't work (well) with all platforms and functional forms
- CSD
 - ▶ Very accurate results, especially with $h \approx 1e 20$ or 1e 30 because error $\sim O(h^2)$
 - ▶ Cost \geq FD
 - Some FORTRAN and MATLAB functions don't work correctly
- FD: 'Idiotic' Munson

CSD Hessian

```
function [fdHess] = CSDHessian(func, x0, dwStep)
 nParams = length(x0);
 fdHess = zeros(nParams);
 for ix = 1: nParams
  xImagStep = x0;
  xImagStep(ix) = x0(ix) + 1i * dwStep;
  for jx = ix : nParams
    xLeft = xImagStep;
    xLeft(jx) = xLeft(jx) - dwStep;
    xRight = xImagStep;
    xRight(jx) = xRight(jx) + dwStep;
    vLeftGrad = func(xLeft);
    vRightGrad = func(xRight);
    fdHess(ix, jx) = imag(vRightGrad...
       - vLeftGrad ) / ( 2 * dwStep^2 ) );
    fdHess(jx, ix) = fdHess(ix, jx);
  end
                                   4 D > 4 A > 4 B > 4 B > 9 Q P
 end
```

Overview of Hessian Pitfalls

'The only way to do a Hessian is to do a Hessian' – Ken Judd

- ▶ The 'Hessian' returned by fmincon is not a Hessian:
 - Computed by BFGS, sr1, or some other approximation scheme
 - A rank 1 update of the identity matrix
 - Requires at least as many iterations as the size of the problem
 - Dependent on quality of initial guess, x0
 - Often built with convexity restriction
- Therefore, you must compute the Hessian either numerically or analytically
- ► fmincon's 'Hessian' often differs considerably from the true Hessian – just check eigenvalues or condition number

Condition Number

Use the condition number to evaluate the stability of your problem:

- ▶ Large values ⇒ trouble
- ▶ Also check eigenvalues: negative or nearly zero eigenvalues ⇒ problem is not concave
- If the Hessian is not full rank, parameters will not be identified

Estimating the Information Matrix

To estimate the information matrix:

- 1. Calculate the Hessian either analytically or numerically
- 2. Invert the Hessian
- 3. Calculate standard errors

```
StandardErrors = sqrt( diag( inv( YourHessian ) ) );
Assuming of source that your chiestive function is the likelihood
```

Assuming, of course, that your objective function is the likelihood...

Validation

Validating your results is a crucial part of the scientific method:

- Generate a Monte Carlo data set: does your estimation code recover the target parameters?
- ► Test Driven Development:
 - 1. Develop a unit test (code to exercise your function)
 - 2. Write your function
 - 3. Validate function behaves correctly for all execution paths
 - 4. The sooner you find a bug, the cheaper it is to fix!!!
- Start simple: e.g. logit with linear utility
- Then slowly add features one at a time, such as interactions or non-linearities
- Validate results via Monte Carlo
- Or, feed it a simple problem with an analytical solution

Diagnosing Problems

Solvers provide a lot of information to determine why your problem can't be solved:

- Exit codes
- Diagnositic Output

Exit Codes

It is crucial that you check the optimizer's exit code and the gradient and Hessian of the objective function:

- Optimizer may not have converged:
 - Exceeded CPU time
 - Exceeded maximum number of iterations
- Optimizer may not have found a global max
- ▶ Constraints may bind when they shouldn't $(\lambda \neq 0)$
- Failure to check exit flags could lead to public humiliation and flogging

Diagnosing Problems

The solver provides information about its progress which can be used to diagnose problems:

- Enable diagnostic output
- ► The meaning of output depends on the type of solver: Interior Point, Active Set, etc.
- In general, you must RTM: each solver is different

Interpreting Solver Output

Things to look for:

- Residual should decrease geometrically towards the end (Gaussian)
 - Then solver has converged
 - Geometric decrease follwed by wandering around:
 - At limit of numerical precision
 - Increase precision and check scaling
- Linear convergence:
 - ▶ $||residual|| \rightarrow 0$: rank deficient Jacobian \Rightarrow lack of identification
 - ▶ Far from solution \Rightarrow convergence to local min of ||residual||
- Check values of Lagrange multipliers:
 - lambda.{ upper, lower, ineqlin, eqlin, ineqnonlin, eqnonlin }
 - ▶ Local min of constraint ⇒ infeasible or locally inconsistent (IP)
 - Non convergence: failure of constraint qualification (NLP)
- ▶ Unbounded: λ or $x \to \pm \infty$

Ipopt

Ipopt is an alternative optimizer which you can use:

- ▶ Interior point algorithm
- ▶ Part of the COIN-OR collection of free optimization packages
- ► Supports C, C++, FORTRAN, AMPL, Java, and MATLAB
- Can be difficult to build see me for details
- www.coin-or.org
- COIN-OR provides free software to facilitate optimization research