Optimizers, Hessians, and Other Dangers

Benjamin S. Skrainka
University College London

July 31, 2009

Overview

We focus on how to get the most out of your optimizer(s):
1. Scaling

Initial Guess

Solver Options

Gradients & Hessians

Dangers with Hessians

Validation

Diagnosing Problems

Ipopt

© N o bk wDN

Scaling

Scaling can help solve convergence problems:
» Naive scaling: scale variables so their magnitudes are ~ 1
» Better: scale variables so solution has magnitude ~ 1

» A good solver may automatically scale the problem

Computing an Initial Guess

Computing a good initial guess is crucial:
» To avoid bad regions in parameter space
» To facilitate convergence
» Possible methods:

» Use a simpler but consistent estimator such as OLS

» Estimate a restricted version of the problem

» Use Nelder-Mead or other derivative-free method (beware of
fminsearch)

» Use Quasi-Monte Carlo search

» Beware: the optimizer may only find a local max!

Explore Your Objective Function

Visualizing your objective function will help you:
» Catch mistakes
» Choose an initial guess

» Determine if variable transformations, such as log or x' = 1/x,
are helpful

Some tools:

» Plot objective function while holding all variables except one
fixed

» Explore points near and far from the expected solution
» Contour plots may also be helpful

» Hopefully, your function is convex...

Solver Options

A state of the art optimizer such as knitro is highly tunable:
» You should configure the options to suit your problem: scale,
linear or non-linear, concavity, constraints, etc.
» Experimentation is required:

Algorithm: Interior/CG, Interior/Direct, Active Set
Barrier parameters: bar_murule, bar_feasible
Tolerances: X, function, constraints

Diagnostics

vV vy VvVYyy

» See Nocedal & Wright for the gory details of how optimizers
work

Which Algorithm?

Different algorithms work better on different problems:
Interior/CG

v

Direct step is poor quality
There is negative curvature
Large or dense Hessian

vy

Interior /Direct

v

[ll-conditioned Hessian of Lagrangian
Large or dense Hessian
Dependent or degenerate constraints

vy

Active Set

» Small and medium scale problems
» You can choose a (good) initial guess

The default is that knitro chooses the algorithm.
= There are no hard rules. You must experiment!!!

Knitro Configuration

Knitro is highly configurable:
» Set options via:

» C, C++, FORTRAN, or Java API
» MATLAB options file

» Documentation in
${KNITRO _DIR}/Knitro60 UserManual.pdf

» Example options file in
${KNITRO _DIR}/examples/Matlab/knitro.opt

Calling Knitro From MATLAB

To call Knitro from MATLAB:
1. Follow steps in InstallGuide.pdf | sent out
2. Call xtrlink:

% Call Knitro

[xOpt, fval, exitflag, output, lambda] = ktrlink(...
Q@(xFree) myLoglLikelihood(xFree, myData), e
xFree, [1, [1, [0, [0, 1b, ub, [1, [J, ’knitro.opt’)

% Check exit flag

if exitflag <= -100 | exitflag >= -199
% Success

end

» Note: older versions of Knitro modify fmincon to call ktrlink

» Best to pass options via a file such as 'knitro.opt’

Listing 1: knitro.opt Options File

KNITRO 6.0.0 Options file
http://ziena.com/documentation.html

Which algorithm to use.

auto = 0 = let KNITRO choose the algorithm

direct = 1 = use Interior (barrier) Direct algorithm
cg = 2 = use Interior (barrier) CG algorithm

active = 3 = use Active Set algorithm

algorithm 0

Whether feasibility is given special emphasis.
no = 0 = no emphasis on feasibility

stay = 1 = iterates must honor inequalities
get = 2 = emphasize first getting feasible before
get stay = 3 = implement both options 1 and 2 above

bar feasible no

Which barrier parameter update strategy.
auto =0 = let KNITRO choose the strategy
monotone = 1
adaptive = 2
probing =3
dampmpc = 4
fullmpec =5
quality =6

ar_murule aut

o3I FHFFHIHHFFH

o

optimiz

Initial trust region radius scaling factor, used to determine
the initial trust region size.
delta 1

Specifies the final relative stopping tolerance for the feasibil
error. Smaller values of feastol result in a higher degree of ac
in the solution with respect to feasibility.

feastol le—06

How to compute/approximate the gradient of the objective
and constraint functions.

exact = 1 = user supplies exact first derivatives

forward = 2 = gradients computed by forward finite differ
central = 3 = gradients computed by central finite differ
gradopt exact

How to compute/approximate the Hessian of the Lagrangian.

exact = 1 = user supplies exact second derivatives

bfgs = 2 = KNITRO computes a dense quasi—Newton BFGS
srl = 3 = KNITRO computes a dense quasi—Newton SR1 H
finite diff = 4 = KNITRO computes Hessian—vector products by
product = 5 = user supplies exact Hessian—vector products
Ibfgs = 6 = KNITRO computes a limited —memory quasi—Newt
hessopt exact

Whether to enforce satisfaction of simple bounds at all iteratio

no = 0 = allow iterations to violate the bounds

always = 1 = enforce bounds satisfaction of all iterates
initpt = 2 = enforce bounds satisfaction of initial point
honorbnds initpt

Maximum number of iterations to allow

(if 0 then KNITRO determines the best value).

Default values are 10000 for NLP and 3000 for MIP.
maxit 0

Maximum allowable CPU time in seconds.
If multistart is active, this limits time spent on one start poi
le+08

Specifies the final relative stopping tolerance for the KKT (op
error. Smaller values of opttol result in a higher degree of acc
the solution with respect to optimality.

opttol le—06

Step size tolerance used for terminating the optimization.
xtol le—15 # Should be sqrt(machine epsilon)

Numerical Gradients and Hessians Overview

Gradients and Hessians are often quite important:

v

Choosing direction and step for Gaussian methods
» Evaluating convergence/non-convergence

» Estimating the information matrix (MLE)

> Note:

> Solvers need accurate gradients to converge correctly
» Solvers do not need precise Hessians
» But, the information matrix does require accurate computation

v

Consequently, quick and accurate evaluation is important:

» Hand-coded, analytic gradient/Hessian
» Automatic differentiation
» Numerical gradient/Hessian

Forward Finite Difference Gradient

function [fgrad] = NumGrad(hFunc, x0, xTol)
x1 = x0 + xTol ;
f1 feval(hFunc, x1) ;
f0 feval(hFunc, x0) ;
fgrad = (f1 - f0) / (x1 - x0) ;

Centered Finite Difference Gradient

function [fgrad] = NumGrad(hFunc, x0, xTol)
x1 = x0 + xTol ;
x2 2 x x0 - x1 ;
f2 = feval(hFunc, x2) ;
fgrad = (f1 - £2) / (x1 - x2) ;

Complex Step Differentiation
Better to use CSD whose error is O(h?):

function [vCSDGrad] = CSDGrad(func, x0, dwStep)
nParams = length(x0) ;
vCSDGrad = zeros(nParams, 1) ;
if nargin < 3

dx = le-5 ;
else

dx = dwStep ;
end

xPlus = x0 + 1i * dx ;
for ix = 1 : nParams

x1 = x0 ;

x1(ix) = xPlus(ix) ;

[fval] = func(x1) ;

vCSDGrad(ix) = imag(fval / dx) ;
end

CSD vs. FD vs. Analytic

The official word from Paul Hovland (Mr. AD):
» AD or analytic derivatives:
> ‘Best’
» Hand-coding is error-prone
» AD doesn't work (well) with all platforms and functional forms

» CSD

» Very accurate results, especially with h ~ 1e — 20 or 1e — 30
because error ~ O (h2)

» Cost > FD
» Some FORTRAN and MATLAB functions don’t work correctly

» FD: ‘Idiotic’ — Munson

CSD Hessian

function | f{dHess | = CSDHessian(func, x0, dwStep)
nParams = length(x0) ;
fdHess = zeros(nParams) ;
for ix = 1 : nParams
xImagStep = x0 ;
xImagStep(ix) = x0(ix) + 1i * dwStep ;
for jx = ix : nParams
xLeft = xImagStep ;
xLeft(jx) = xLeft(jx) - dwStep ;
xRight = xImagStep ;
xRight(jx) = xRight(jx) + dwStep ;
vLeftGrad = func(xLeft) ;
vRightGrad = func(xRight) ;
fdHess(ix, jx) = imag((vRightGrad ...
- vLeftGrad) / (2 * dwStep~2)) ;
fdHess(jx, ix) = fdHess(ix, jx) ;
end
end

Overview of Hessian Pitfalls

‘The only way to do a Hessian is to do a Hessian' — Ken Judd
» The ‘Hessian' returned by fmincon is not a Hessian:

Computed by BFGS, srl, or some other approximation scheme
A rank 1 update of the identity matrix

Requires at least as many iterations as the size of the problem
Dependent on quality of initial guess, x0

Often built with convexity restriction

vV vy VY VvVYYy

» Therefore, you must compute the Hessian either numerically or
analytically

» fmincon's ‘Hessian’ often differs considerably from the true
Hessian — just check eigenvalues or condition number

Condition Number

Use the condition number to evaluate the stability of your problem:
max [eig (A)]

min [eig (A)]

> Large values = trouble

» cond (A) =

» Also check eigenvalues: negative or nearly zero eigenvalues =
problem is not concave

» If the Hessian is not full rank, parameters will not be identified

Estimating the Information Matrix

To estimate the information matrix:
1. Calculate the Hessian — either analytically or numerically
2. Invert the Hessian

3. Calculate standard errors

StandardErrors = sqrt(diag(inv(YourHessian))) ;

Assuming, of course, that your objective function is the likelihood...

Validation

Validating your results is a crucial part of the scientific method:

> Generate a Monte Carlo data set: does your estimation code
recover the target parameters?

» Test Driven Development:

1. Develop a unit test (code to exercise your function)

2. Write your function

3. Validate function behaves correctly for all execution paths
4. The sooner you find a bug, the cheaper it is to fix!!!

» Start simple: e.g. logit with linear utility

» Then slowly add features one at a time, such as interactions or
non-linearities

» Validate results via Monte Carlo

» Or, feed it a simple problem with an analytical solution

Diagnosing Problems

Solvers provide a lot of information to determine why your problem
can't be solved:

» Exit codes

» Diagnositic Output

Exit Codes

It is crucial that you check the optimizer's exit code and the
gradient and Hessian of the objective function:

» Optimizer may not have converged:

» Exceeded CPU time
» Exceeded maximum number of iterations

» Optimizer may not have found a global max
» Constraints may bind when they shouldn’t (A # 0)

» Failure to check exit flags could lead to public humiliation and
flogging

Diagnosing Problems

The solver provides information about its progress which can be
used to diagnose problems:

» Enable diagnostic output

» The meaning of output depends on the type of solver: Interior
Point, Active Set, etc.

» In general, you must RTM: each solver is different

Interpreting Solver Output
Things to look for:

» Residual should decrease geometrically towards the end
(Gaussian)
» Then solver has converged
» Geometric decrease follwed by wandering around:
> At limit of numerical precision

> Increase precision and check scaling

» Linear convergence:

> ||residual|| — 0: rank deficient Jacobian = lack of
identification
» Far from solution = convergence to local min of ||residual||

» Check values of Lagrange multipliers:

» lambda.{ upper, lower, ineqlin, eqlin, inegnonlin,
egnonlin }

» Local min of constraint = infeasible or locally inconsistent (IP)

» Non convergence: failure of constraint qualification (NLP)

» Unbounded: X or x — 400

lpopt

Ipopt is an alternative optimizer which you can use:

>

vV v . v. v .Y

Interior point algorithm

Part of the COIN-OR collection of free optimization packages
Supports C, C++, FORTRAN, AMPL, Java, and MATLAB
Can be difficult to build — see me for details
WWW.COIN-0r.0rg

COIN-OR provides free software to facilitate optimization
research

