Numerical Optimization for Economists

TODD MUNSON
Mathematics and Computer Division
Argonne National Laboratory
tmunson@mcs.anl.gov

Institute for Computational Economics
University of Chicago
July 19–30, 2010
Part I

Numerical Optimization: Introduction
Modeling Language Benefits

- Portable language for optimization problems
 - Algebraic description
 - Models easily modified and solved
 - Large problems can be processed
 - Programming language features

- Many available optimization algorithms
- No need to compile C/FORTRAN code
- Derivatives automatically calculated
- Algorithms specific options can be set
- Communication with other tools
 - Relational databases and spreadsheets
 - MATLAB interface for function evaluations

- Excellent documentation
- Large user communities
Modeling Language Benefits

- Portable language for optimization problems
 - Algebraic description
 - Models easily modified and solved
 - Large problems can be processed
 - Programming language features

- Many available optimization algorithms
 - No need to compile C/FORTRAN code
 - Derivatives automatically calculated
 - Algorithms specific options can be set

- Communication with other tools
 - Relational databases and spreadsheets
 - MATLAB interface for function evaluations

- Excellent documentation

- Large user communities
Modeling Language Benefits

- Portable language for optimization problems
 - Algebraic description
 - Models easily modified and solved
 - Large problems can be processed
 - Programming language features
- Many available optimization algorithms
 - No need to compile C/FORTRAN code
 - Derivatives automatically calculated
 - Algorithms specific options can be set
- Communication with other tools
 - Relational databases and spreadsheets
 - MATLAB interface for function evaluations
Modeling Language Benefits

- Portable language for optimization problems
 - Algebraic description
 - Models easily modified and solved
 - Large problems can be processed
 - Programming language features
- Many available optimization algorithms
 - No need to compile C/FORTRAN code
 - Derivatives automatically calculated
 - Algorithms specific options can be set
- Communication with other tools
 - Relational databases and spreadsheets
 - MATLAB interface for function evaluations
- Excellent documentation
- Large user communities
Modeling Languages Versus Solver Libraries

- Modeling languages
 - Easy to model and solve problems
 - Derivatives automatically computed
 - Access to many numerical methods

- Solver libraries
 - Computationally efficient
 - Select appropriate matrix representation
 - Reorder data for locality of reference
 - Memory requirements are less
 - Very time consuming to code and validate application
 - Limited to a single numerical method
Modeling Languages Versus Solver Libraries

- **Modeling languages**
 - Easy to model and solve problems
 - Derivatives automatically computed
 - Access to many numerical methods
 - Can take over 50 times longer to solve
 - Can consume over 100 times the memory

- **Solver libraries**
 - Computationally efficient
 - Select appropriate matrix representation
 - Reorder data for locality of reference
 - Memory requirements are less
 - Very time consuming to code and validate application
 - Limited to a single numerical method
Modeling Languages Versus Solver Libraries

- **Modeling languages**
 - Easy to model and solve problems
 - Derivatives automatically computed
 - Access to many numerical methods
 - Can take over 50 times longer to solve
 - Can consume over 100 times the memory

- **Solver libraries**
 - Computationally efficient
 - Select appropriate matrix representation
 - Reorder data for locality of reference
 - Memory requirements are less
Modeling Languages Versus Solver Libraries

- **Modeling languages**
 - Easy to model and solve problems
 - Derivatives automatically computed
 - Access to many numerical methods
 - Can take over 50 times longer to solve
 - Can consume over 100 times the memory

- **Solver libraries**
 - Computationally efficient
 - Select appropriate matrix representation
 - Reorder data for locality of reference
 - Memory requirements are less
 - Very time consuming to code and validate application
 - Limited to a single numerical method
Model Declaration

- **Sets**
 - Unordered, ordered, and circular sets
 - Cross products and point to set mappings
 - Set manipulation

- **Parameters and variables**
 - Initial and default values
 - Lower and upper bounds
 - Check statements
 - Defined variables

- **Objective function and constraints**
 - Equality, inequality, and range constraints
 - Complementarity constraints
 - Multiple objectives

- **Problem statement**
Data and Commands

- Data declaration
 - Set definitions
 - Explicit list of elements
 - Implicit list in parameter statements
 - Parameter definitions
 - Tables and transposed tables
 - Higher dimensional parameters
- Execution commands
 - Load model and data
 - Select problem, algorithm, and options
 - Solve the instance
 - Output results
- Other operations
 - Let and fix statements
 - Conditionals and loop constructs
 - Execution of external programs
Part II

Numerical Optimization I: Static Models
Model Formulation

- Classify m people into two groups using v variables
 - $c \in \{0, 1\}^m$ is the known classification
 - $d \in \mathbb{R}^{m \times v}$ are the observations
 - $\beta \in \mathbb{R}^{v+1}$ defines the separator
 - logit distribution function

- Maximum likelihood problem

$$\max_{\beta} \sum_{i=1}^{m} c_i \log(f(\beta, d_i,.)) + (1 - c_i) \log(1 - f(\beta, d_i,.))$$

where

$$f(\beta, x) = \frac{\exp \left(\beta_0 + \sum_{j=1}^{v} \beta_j x_j \right)}{1 + \exp \left(\beta_0 + \sum_{j=1}^{v} \beta_j x_j \right)}$$
Model: mle.mod

```plaintext
param m > 0, integer;    # Population
param v > 0, integer;    # Variables

param c {1..m} binary;  # Classification
param d {1..m, 1..v};   # Observation data

var beta {0..v};        # Weights

var lcomb {i in 1..m} = beta[0] + sum{j in 1..v} beta[j]*D[i,j];
var logit {i in 1..m} = exp(lcomb[i]) / (1+exp(lcomb[i]));

maximize likelihood:
    sum {i in 1..m} (c[i]*log(logit[i]) + (1-c[i])*log(1-logit[i]));
```

Munson Numerical Optimization
Data: mle.dat

param m := 3000;
Population
param v := 3;
Variables -- age, income, gender

Random classification and observations
let {i in 1..m} c[i] := floor(Uniform(0,1) + 0.5);
let {i in 1..m, j in 1..v-1} d[i,j] := Uniform(0,1);
let {i in 1..m} d[i,v] := floor(Uniform(0,1) + 0.5);
Load model and data
model mle.mod;
data mle.dat;

Specify solver and options
option solver tron;
option tron_options "frtol=0 fatol=0 gtol=1e-8";

Solve the instance
solve;

Output the results
display beta;
ampl: include mle.cmd;
TRON: frtol=0
fatol=0
gtol=1e-8

Projected gradient at final iterate 5.95e-08
Function value at final iterate 2077.6373

Total execution time 0.03 sec

Exit Message CONVERGENCE: GTOL TEST SATISFIED

beta [*] :=
0 -0.186925
1 0.161719
2 0.15411
3 0.0509116
;
ampl: quit;
Solution Techniques

$$\min_x f(x)$$

Main ingredients of solution approaches:

- **Local method**: given x_k (solution guess) compute a step s.
 - Gradient Descent
 - Quasi-Newton Approximation
 - Sequential Quadratic Programming
- **Globalization strategy**: converge from any starting point.
 - Trust region
 - Line search
Trust-Region Method

\[
\min_{s} \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s \\
\text{subject to} \quad \|s\| \leq \Delta_k
\]
Trust-Region Method

1. Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation
Trust-Region Method

1. Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation

2. Compute a new iterate
 2.1 Solve trust-region subproblem
 \[
 \min_s \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s \\
 \text{subject to} \quad \|s\| \leq \Delta_k
 \]
Trust-Region Method

1. Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation

2. Compute a new iterate
 2.1 Solve trust-region subproblem
 \[
 \min_s \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s \\
 \text{subject to} \quad \|s\| \leq \Delta_k
 \]
 2.2 Accept or reject iterate
 2.3 Update trust-region radius
 - Reduction
 - Interpolation

3. Check convergence
Solving the Subproblem

- Moré-Sorensen method
 - Computes global solution to subproblem
- Conjugate gradient method with trust region
 - Objective function decreases monotonically
 - Some choices need to be made
 - Preconditioner
 - Norm of direction and residual
 - Dealing with negative curvature
Line-Search Method

\[
\min_{s} \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s
\]
Line-Search Method

1. Initialize perturbation to zero
2. Solve perturbed quadratic model

\[
\min_s f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s
\]
Line-Search Method

1. Initialize perturbation to zero
2. Solve perturbed quadratic model

\[
\min_s \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2}s^T (H(x_k) + \lambda_k I)s
\]

3. Find new iterate
 3.1 Search along Newton direction
 3.2 Search along gradient-based direction

4. Update perturbation
 - Decrease perturbation if the following hold
 - Iterative method succeeds
 - Search along Newton direction succeeds
 - Otherwise increase perturbation
Line-Search Method

1. Initialize perturbation to zero
2. Solve perturbed quadratic model

\[
\min_s \ f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s
\]

3. Find new iterate
 3.1 Search along Newton direction
 3.2 Search along gradient-based direction
4. Update perturbation
 • Decrease perturbation if the following hold
 • Iterative method succeeds
 • Search along Newton direction succeeds
 • Otherwise increase perturbation
5. Check convergence
Solving the Subproblem

- Conjugate gradient method
Solving the Subproblem

- Conjugate gradient method
- Conjugate gradient method with trust region
 - Initialize radius
 - Constant
 - Direction
 - Interpolation
 - Update radius
 - Reduction
 - Step length
 - Interpolation
- Some choices need to be made
 - Preconditioner
 - Norm of direction and residual
 - Dealing with negative curvature
Performing the Line Search

- **Backtracking Armijo Line search**
 - Find \(t \) such that
 \[
 f(x_k + ts) \leq f(x_k) + \sigma t \nabla f(x_k)^T s
 \]
 - Try \(t = 1, \beta, \beta^2, \ldots \) for \(0 < \beta < 1 \)

- **More-Thuente Line search**
 - Find \(t \) such that
 \[
 f(x_k + ts) \leq f(x_k) + \sigma t \nabla f(x_k)^T s
 \\
 |\nabla f(x_k + ts)^T s| \leq \delta |\nabla f(x_k)^T s|
 \]
 - Construct cubic interpolant
 - Compute \(t \) to minimize interpolant
 - Refine interpolant
Updating the Perturbation

1. If increasing and $\Delta^k = 0$

$$\Delta^{k+1} = \text{Proj}_{[\ell_0, u_0]} \left(\alpha_0 \| g(x^k) \| \right)$$

2. If increasing and $\Delta^k > 0$

$$\Delta^{k+1} = \text{Proj}_{[\ell_i, u_i]} \left(\max \left(\alpha_i \| g(x^k) \|, \beta_i \Delta^k \right) \right)$$

3. If decreasing

$$\Delta^{k+1} = \min \left(\alpha_d \| g(x^k) \|, \beta_d \Delta^k \right)$$

4. If $\Delta^{k+1} < \ell_d$, then $\Delta^{k+1} = 0$
Iterative Methods

• Conjugate gradient method
 • Stop if negative curvature encountered
 • Stop if residual norm is small
Iterative Methods

- Conjugate gradient method
 - Stop if negative curvature encountered
 - Stop if residual norm is small
- Conjugate gradient method with trust region
 - Nash
 - Follow direction to boundary if first iteration
 - Stop at base of direction otherwise
 - Steihaug-Toint
 - Follow direction to boundary
- Generalized Lanczos
 - Compute tridiagonal approximation
 - Find global solution to approximate problem on boundary
 - Initialize perturbation with approximate minimum eigenvalue
Preconditioners

- No preconditioner
- Absolute value of Hessian diagonal
- Absolute value of perturbed Hessian diagonal
- Incomplete Cholesky factorization of Hessian
- Block Jacobi with Cholesky factorization of blocks
- Scaled BFGS approximation to Hessian matrix
 - None
 - Scalar
 - Diagonal of Broyden update
 - Rescaled diagonal of Broyden update
 - Absolute value of Hessian diagonal
 - Absolute value of perturbed Hessian diagonal
Termination

- Typical convergence criteria
 - Absolute residual $\|\nabla f(x_k)\| < \tau_a$
 - Relative residual $\frac{\|\nabla f(x_k)\|}{\|\nabla f(x_k)\|} < \tau_r$
 - Unbounded objective $f(x_k) < \kappa$
 - Slow progress $|f(x_k) - f(x_{k-1})| < \epsilon$
 - Iteration limit
 - Time limit

- Solver status

```plaintext
display solve_result;  # String
display solve_result_num;  # Number
display $solve_result_table;  # Lookup table
```
Convergence Issues

- Quadratic convergence – best outcome
- Linear convergence
 - Far from a solution – $\|\nabla f(x_k)\|$ is large
 - Hessian is incorrect – disrupts quadratic convergence
 - Hessian is rank deficient – $\|\nabla f(x_k)\|$ is small
 - Limits of finite precision arithmetic
 1. $\|\nabla f(x_k)\|$ converges quadratically to small number
 2. $\|\nabla f(x_k)\|$ hovers around that number with no progress
- Domain violations such as $\frac{1}{x}$ when $x = 0$
 - Make implicit constraints explicit
- Nonglobal solution
 - Apply a multistart heuristic
 - Use global optimization solver
Some Available Software

- TRON – Newton method with trust-region
- LBFGS – Limited-memory quasi-Newton method with line search
- TAO – Toolkit for Advanced Optimization
 - NTR – Newton line-search method
 - NLS – Newton trust-region method
 - NTL – Newton line-search/trust-region method
 - LMVM – Limited-memory quasi-Newton method
 - CG – Nonlinear conjugate gradient methods
Model Formulation

- Economy with n agents and m commodities
 - $e \in \mathbb{R}^{n \times m}$ are the endowments
 - $\alpha \in \mathbb{R}^{n \times m}$ and $\beta \in \mathbb{R}^{n \times m}$ are the utility parameters
 - $\lambda \in \mathbb{R}^{n}$ are the social weights

- Social planning problem

$$\max_{x \geq 0} \sum_{i=1}^{n} \lambda_i \left(\sum_{k=1}^{m} \frac{\alpha_{i,k}(1 + x_{i,k})^{1-\beta_{i,k}}}{1 - \beta_{i,k}} \right)$$

subject to

$$\sum_{i=1}^{n} x_{i,k} \leq \sum_{i=1}^{n} e_{i,k} \quad \forall k = 1, \ldots, m$$
Model: social1.mod

param n > 0, integer; # Agents
param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights
param alpha {1..n, 1..m} > 0; # Utility parameters
param beta {1..n, 1..m} > 0;
Model: social1.mod

param n > 0, integer; # Agents
param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights
param alpha {1..n, 1..m} > 0; # Utility parameters
param beta {1..n, 1..m} > 0;

var x{1..n, 1..m} >= 0; # Consumption
var u{i in 1..n} =
 sum {k in 1..m} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);
Model: social1.mod

param n > 0, integer; # Agents
param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment
param lambda {1..n} > 0; # Social weights
param alpha {1..n, 1..m} > 0; # Utility parameters
param beta {1..n, 1..m} > 0;

var x{1..n, 1..m} >= 0; # Consumption
var u{i in 1..n} =
 sum {k in 1..m} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

maximize welfare:
 sum {i in 1..n} lambda[i] * u[i];

subject to
 consumption {k in 1..m}:
 sum {i in 1..n} x[i,k] <= sum {i in 1..n} e[i,k];
Data: social1.dat

param n := 3; # Agents
param m := 4; # Commodities
Data: social1.dat

param n := 3; # Agents
param m := 4; # Commodities

param alpha:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

param beta (tr):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

param : lambda:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Load model and data
model social1.mod;
data social1.dat;

Specify solver and options
option solver minos;
option minos_options "outlev=1";

Solve the instance
solve;

Output results
display x;
printf {i in 1..n} "%2d: % 5.4e\n", i, u[i];
Output

ampl: include social1.cmd;
MINOS 5.5: outlev=1
MINOS 5.5: optimal solution found.
25 iterations, objective 2.25422003
Nonlin evals: obj = 44, grad = 43.
x :=
 1 1 0.0811471
 1 2 0.574164
 1 3 0.703454
 1 4 0.267241
 2 1 0.060263
 2 2 0.604858
 2 3 1.7239
 2 4 1.47516
 3 1 2.85859
 3 2 1.82098
 3 3 0.572645
 3 4 1.2576
;

 1: -5.2111e+00
 2: -4.0488e+00
 3: 1.1512e+01
ampl: quit;
Model: social2.mod

set AGENTS; # Agents
set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment
param lambda {AGENTS} > 0; # Social weights
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;
param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];
var x{AGENTS, COMMODITIES} >= 0; # Consumption
var u{i in AGENTS} = # Utility
 sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];
maximize welfare:
 sum {i in AGENTS} lambda[i] * u[i];
subject to
 consumption {k in COMMODITIES}:
 sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];
Model: social2.mod

set AGENTS; # Agents
set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment
param lambda {AGENTS} > 0; # Social weights
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x {AGENTS, COMMODITIES} >= 0; # Consumption

var u {i in AGENTS} = # Utility
 sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:
 sum {i in AGENTS} lambda[i] * u[i];

subject to
 consumption {k in COMMODITIES}:
 sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];
Model: social2.mod

set AGENTS; # Agents
set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x{AGENTS, COMMODITIES} >= 0; # Consumption
var u{i in AGENTS} = # Utility
 sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:
 sum {i in AGENTS} lambda[i] * u[i];

subject to
 consumption {k in COMMODITIES}:
 sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];
Model: social2.mod

set AGENTS; # Agents
set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x{AGENTS, COMMODITIES} >= 0; # Consumption
var u{i in AGENTS} = # Utility
 sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:
 sum {i in AGENTS} lambda[i] * u[i];

subject to
 consumption {k in COMMODITIES}:
 sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];
Data: social2.dat

set COMMODITIES := Books, Cars, Food, Pens;

param: AGENTS : lambda :=
 Jorge 1
 Sven 1
 Todd 1;

param alpha : Books Cars Food Pens :=
 Jorge 1 1 1 1
 Sven 1 2 3 4
 Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=
 Books 1.5 2 0.6
 Cars 1.6 3 0.7
 Food 1.7 2 2.0
 Pens 1.8 2 2.5;
Data: social2.dat

set COMMODITIES := Books, Cars, Food, Pens;

param: AGENTS : lambda :=
 Jorge 1
 Sven 1
 Todd 1;

param alpha : Books Cars Food Pens :=
 Jorge 1 1 1 1
 Sven 1 2 3 4
 Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=
 Books 1.5 2 0.6
 Cars 1.6 3 0.7
 Food 1.7 2 2.0
 Pens 1.8 2 2.5;
Commands: social2.cmd

Load model and data
model social2.mod;
data social2.dat;

Specify solver and options
option solver minos;
option minos_options "outlev=1";

Solve the instance
solve;

Output results
display x;
printf {i in AGENTS} "%-5s: %g
", i, u[i];
Output

ampl: include social2.cmd
MINOS 5.5: outlev=1
MINOS 5.5: optimal solution found.
25 iterations, objective 2.25422003
Nonlin evals: obj = 44, grad = 43.
x :=
 Jorge Books 0.0811471
 Jorge Cars 0.574164
 Jorge Food 0.703454
 Jorge Pens 0.267241
 Sven Books 0.060263
 Sven Cars 0.604858
 Sven Food 1.7239
 Sven Pens 1.47516
 Todd Books 2.85859
 Todd Cars 1.82098
 Todd Food 0.572645
 Todd Pens 1.2576
;
Jorge: -5.2111e+00
 Sven: -4.0488e+00
 Todd: 1.1512e+01
ampl: quit;
Solving Constrained Optimization Problems

\[\min_{x} f(x) \]

subject to \(c(x) \geq 0 \)

Main ingredients of solution approaches:

- Local method: given \(x_k \) (solution guess) find a step \(s \).
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - Interior-Point Method (IPM)

- Globalization strategy: converge from any starting point.
 - Trust region
 - Line search

- Acceptance criteria: filter or penalty function.
Sequential Linear Programming

1. Initialize trust-region radius
2. Compute a new iterate
Sequential Linear Programming

1. Initialize trust-region radius
2. Compute a new iterate
 2.1 Solve linear program

\[
\begin{align*}
\min_{s} & \quad f(x_k) + s^T \nabla f(x_k) \\
\text{subject to} & \quad c(x_k) + \nabla c(x_k)^T s \geq 0 \\
& \quad \|s\| \leq \Delta_k
\end{align*}
\]
Sequential Linear Programming

1. Initialize trust-region radius
2. Compute a new iterate
 2.1 Solve linear program
 \[
 \begin{align*}
 \min_s & \quad f(x_k) + s^T \nabla f(x_k) \\
 \text{subject to} & \quad c(x_k) + \nabla c(x_k)^T s \geq 0 \\
 & \quad \|s\| \leq \Delta_k
 \end{align*}
 \]
 2.2 Accept or reject iterate
 2.3 Update trust-region radius
3. Check convergence
Sequential Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate
Sequential Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate
 2.1 Solve quadratic program

\[
\min_{s} \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s \\
\text{subject to} \quad c(x_k) + \nabla c(x_k)^T s \geq 0 \\
\|s\| \leq \Delta_k
\]
Sequential Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate
 2.1 Solve quadratic program
 \[
 \min_s \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s \\
 \text{subject to} \quad c(x_k) + \nabla c(x_k)^T s \geq 0 \\
 \|s\| \leq \Delta_k
 \]
 2.2 Accept or reject iterate
 2.3 Update trust-region radius
3. Check convergence
Sequential Linear Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate
Sequential Linear Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate
 2.1 Solve linear program to predict active set

\[
\begin{align*}
\min_{\mathbf{d}} & \quad f(x_k) + \mathbf{d}^T \nabla f(x_k) \\
\text{subject to} & \quad c(x_k) + \nabla c(x_k)^T \mathbf{d} \geq 0 \\
& \quad \|\mathbf{d}\| \leq \Delta_k
\end{align*}
\]
Sequential Linear Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate
 2.1 Solve linear program to predict active set
 \[
 \min_d \quad f(x_k) + d^T \nabla f(x_k) \\
 \text{subject to } c(x_k) + \nabla c(x_k)^T d \geq 0 \\
 \|d\| \leq \Delta_k
 \]
 2.2 Solve equality constrained quadratic program
 \[
 \min_s \quad f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s \\
 \text{subject to } c_A(x_k) + \nabla c_A(x_k)^T s = 0
 \]
 2.3 Accept or reject iterate
 2.4 Update trust-region radius
3. Check convergence
Acceptance Criteria

- Decrease objective function value: \(f(x_k + s) \leq f(x_k) \)
- Decrease constraint violation: \(\|c_-(x_k + s)\| \leq \|c_-(x_k)\| \)
Acceptance Criteria

- Decrease objective function value: \(f(x_k + s) \leq f(x_k) \)
- Decrease constraint violation: \(\| c_-(x_k + s) \| \leq \| c_-(x_k) \| \)
- Four possibilities
 1. step can decrease both \(f(x) \) and \(\| c_-(x) \| \) GOOD
 2. step can decrease \(f(x) \) and increase \(\| c_-(x) \| \) ???
 3. step can increase \(f(x) \) and decrease \(\| c_-(x) \| \) ???
 4. step can increase both \(f(x) \) and \(\| c_-(x) \| \) BAD

Filter uses concept from multi-objective optimization
\((h_k + 1, f_{k+1}) \) dominates \((h_\ell, f_\ell)\) iff \(h_k + 1 \leq h_\ell \) and \(f_{k+1} \leq f_\ell \)
Acceptance Criteria

• Decrease objective function value: \(f(x_k + s) \leq f(x_k) \)
• Decrease constraint violation: \(\|c_-(x_k + s)\| \leq \|c_-(x_k)\| \)
• Four possibilities
 1. step can decrease both \(f(x) \) and \(\|c_-(x)\| \) GOOD
 2. step can decrease \(f(x) \) and increase \(\|c_-(x)\| \) ???
 3. step can increase \(f(x) \) and decrease \(\|c_-(x)\| \) ???
 4. step can increase both \(f(x) \) and \(\|c_-(x)\| \) BAD

• Filter uses concept from multi-objective optimization

\((h_{k+1}, f_{k+1})\) dominates \((h_{\ell}, f_{\ell})\) iff \(h_{k+1} \leq h_{\ell} \) and \(f_{k+1} \leq f_{\ell} \)
Filter Framework

Filter \mathcal{F}: list of non-dominated pairs (h_ℓ, f_ℓ)

- new x_{k+1} is acceptable to filter \mathcal{F} iff
 1. $h_{k+1} \leq h_\ell$ for all $\ell \in \mathcal{F}$ or
 2. $f_{k+1} \leq f_\ell$ for all $\ell \in \mathcal{F}$
Filter Framework

Filter \mathcal{F}: list of non-dominated pairs (h_ℓ, f_ℓ)

- new x_{k+1} is acceptable to filter \mathcal{F} iff
 1. $h_{k+1} \leq h_\ell$ for all $\ell \in \mathcal{F}$ or
 2. $f_{k+1} \leq f_\ell$ for all $\ell \in \mathcal{F}$
- remove redundant filter entries
Filter Framework

Filter \mathcal{F}: list of non-dominated pairs (h_ℓ, f_ℓ)

- new x_{k+1} is acceptable to filter \mathcal{F} iff
 1. $h_{k+1} \leq h_\ell$ for all $\ell \in \mathcal{F}$ or
 2. $f_{k+1} \leq f_\ell$ for all $\ell \in \mathcal{F}$

- remove redundant filter entries

- new x_{k+1} is rejected if for some $\ell \in \mathcal{F}$
 1. $h_{k+1} > h_\ell$ and
 2. $f_{k+1} > f_\ell$
Convergence Criteria

- Feasible and no descent directions
 - Constraint qualification – LICQ, MFCQ
 - Linearized active constraints characterize directions
 - Objective gradient is a linear combination of constraint gradients
Optimality Conditions

- If x^* is a local minimizer and a constraint qualification holds, then there exist multipliers $\lambda^* \geq 0$ such that
 \[\nabla f(x^*) - \nabla c_A(x^*)^T \lambda^*_A = 0 \]

- Lagrangian function $L(x, \lambda) := f(x) - \lambda^T c(x)$

- Optimality conditions can be written as
 \[\nabla f(x) - \nabla c(x)^T \lambda = 0 \]
 \[0 \leq \lambda \perp c(x) \geq 0 \]

- Complementarity problem
Termination

- Feasible and complementary \(\| \text{min}(c(x_k), \lambda_k) \| \leq \tau_f \)
- Optimal \(\| \nabla_x \mathcal{L}(x_k, \lambda_k) \| \leq \tau_o \)
- Other possible conditions
 - Slow progress
 - Iteration limit
 - Time limit
- Multipliers and reduced costs

```
display consumption.slack; # Constraint violation
display consumption.dual;   # Lagrange multipliers
display x.rc;               # Gradient of Lagrangian
```
Convergence Issues

- Quadratic convergence – best outcome
- Globally infeasible – linear constraints infeasible
- Locally infeasible – nonlinear constraints locally infeasible
- Unbounded objective – hard to detect
- Unbounded multipliers – constraint qualification not satisfied
- Linear convergence rate
 - Far from a solution – $\|\nabla f(x_k)\|$ is large
 - Hessian is incorrect – disrupts quadratic convergence
 - Hessian is rank deficient – $\|\nabla f(x_k)\|$ is small
 - Limits of finite precision arithmetic
- Domain violations such as $\frac{1}{x}$ when $x = 0$
 - Make implicit constraints explicit
- Nonglobal solutions
 - Apply a multistart heuristic
 - Use global optimization solver
Some Available Software

- ASTROS – Active-Set Trust-Region Optimization Solvers
- filterSQP
 - trust-region SQP; robust QP solver
 - filter to promote global convergence
- SNOPT
 - line-search SQP; null-space CG option
 - ℓ_1 exact penalty function
- SLIQUE – part of KNITRO
 - SLP-EQP
 - trust-region with ℓ_1 penalty
 - use with `knitro_options = "algorithm=3";`
Model Formulation

- Maximize discounted utility
 - $u(\cdot)$ is the utility function
 - R is the retirement age
 - T is the terminal age
 - w is the wage
 - β is the discount factor
 - r is the interest rate

- Optimization problem

$$\max_{s,c} \sum_{t=0}^{T} \beta^t u(c_t)$$

subject to

$$s_{t+1} = (1 + r)s_t + w - c_t \quad t = 0, \ldots, R - 1$$
$$s_{t+1} = (1 + r)s_t - c_t \quad t = R, \ldots, T$$
$$s_0 = s_{T+1} = 0$$
Model: life1.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age
param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:
sum {t in 0..T} beta^t * u[t];

subject to
working {t in 0..R-1}:
s[t+1] = (1+rate)*s[t] + wage - c[t];
retired {t in R..T}:
s[t+1] = (1+rate)*s[t] - c[t];
initial:
s[0] = 0;
terminal:
s[T+1] = 0;
Model: life1.mod

\begin{verbatim}
param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:
 \sum {t in 0..T} beta^t * u[t];
subject to
 working {t in 0..R-1}:
 s[t+1] = (1+rate)*s[t] + wage - c[t];
 retired {t in R..T}:
 s[t+1] = (1+rate)*s[t] - c[t];
 initial:
 s[0] = 0;
 terminal:
 s[T+1] = 0;
\end{verbatim}
Model: life1.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:
 sum {t in 0..T} beta^t * u[t];

subject to
 working {t in 0..R-1}:
 s[t+1] = (1+rate)*s[t] + wage - c[t];

 retired {t in R..T}:
 s[t+1] = (1+rate)*s[t] - c[t];

 initial:
 s[0] = 0;

 terminal:
 s[T+1] = 0;
Data: life1.dat

param R := 7; # Retirement age
param T := 10; # Terminal age
param beta := 0.9; # Discount factor
param rate := 0.2; # Interest rate
param wage := 1.0; # Wage rate
Commands: life1.cmd

Load model and data
model life1.mod;
data life1.dat;

Specify solver and options
option solver mpec;

Solve the instance
solve;

Output results
printf {t in 0..T} "%2d %5.4e %5.4e\n", t, s[t], c[t] > out1.dat;
Output

ampl: include life1.cmd
AMPL interface to filter-MPEC: 20040408
 : filter objective function = -3.24322
 constraint violation = 1.01433e-11
Optimal solution found
14 iterations (0 for feasibility)
Evals: obj = 15, constr = 16, grad = 16, Hes = 15
ampl: quit;
Model: negishi.mod

set Commodities; # Goods and factors
set Producers within Commodities; # Consumer goods produced
Model: negishi.mod

set Commodities; # Goods and factors
set Producers within Commodities; # Consumer goods produced

Structure of the Nested CES Functions for Producers
INodes: internal nodes for the tree in postfix order
FUse : factor inputs used by the node
IUse : internal node output used by the node
TUse : full list of factors referenced

set P_INodes {Producers} ordered;
set P_FUse {p in Producers, P_INodes[p]} within Commodities;
set P_IUse {p in Producers, P_INodes[p]} within P_INodes[p];
set P_TUse {p in Producers} := union {k in P_INodes[p]} P_FUse[p,k];
Model: negishi.mod

set Commodities; # Goods and factors
set Producers within Commodities; # Consumer goods produced

Structure of the Nested CES Functions for Producers
INodes: internal nodes for the tree in postfix order
FUse : factor inputs used by the node
IUse : internal node output used by the node
TUse : full list of factors referenced

set P_INodes {Producers} ordered;
set P_FUse {p in Producers, P_INodes[p]} within Commodities;
set P_IUse {p in Producers, P_INodes[p]} within P_INodes[p];
set P_TUse {p in Producers} := union {k in P_INodes[p]} P_FUse[p,k];

Parameters for Producer Nested CES Functions

param P_Scale {p in Producers, i in P_INodes[p]}
param P_Elasticity {p in Producers, i in P_INodes[p]}
param P_FDist {p in Producers, i in P_INodes[p], k in P_FUse[p,i]}
param P_IDist {p in Producers, i in P_INodes[p], j in P_IUse[p,i]}

param P_Alpha {p in Producers, i in P_INodes[p]}
 := 1.0 - 1.0/P_Elasticity[p,i];
param P_Beta {p in Producers, i in P_INodes[p]} := 1.0 / P_Alpha[p,i];
Producer Behavior

Input : quantities of commodities demanded by the producers
Output: quantities of commodities created by the producers

```plaintext
var Input {p in Producers, P_TUse[p]} >= 0, := 1;

var Output {p in Producers, i in P_INodes[p]} =
    P_Scale[p,i]*(
        sum {k in P_FUse[p,i]} P_FDist[p,i,k]*Input[p,k]^P_Alpha[p,i] +
        sum {j in P_IUse[p,i]} P_IDist[p,i,j]*Output[p,j]^P_Alpha[p,i]
    )^P_Beta[p,i];
```

Consumer Behavior

Endow : initial endowment of commodities
Demand : quantities of commodities demanded by the consumer
Utility: utility of the commodities demanded by the consumer
: determined from the nested CES Utility Function

```plaintext
param Endow {c in Consumers, k in Commodities};
var Demand {c in Consumers, C_TUse[c]} >= 0, := 1;

var Utility {c in Consumers, i in C_INodes[c]} =
    C_Scale[c,i]*(
        sum {k in C_FUse[c,i]} C_AFDist[c,i,k]*Demand[c,k]^C_Alpha[c,i] +
        sum {j in C_IUse[c,i]} C_AIDist[c,i,j]*Utility[c,j]^C_Alpha[c,i]
    )^C_Beta[c,i];
```
Model: negishi.mod

Producer Behavior
Input: quantities of commodities demanded by the producers
Output: quantities of commodities created by the producers

var Input \{p \in Producers, P_TUse[p]\} \geq 0, := 1;

var Output \{p \in Producers, i \in P_INodes[p]\} =
P_Scale[p,i]*(
 \sum \{k \in P_FUse[p,i]\} P_FDist[p,i,k]*Input[p,k]^P_Alpha[p,i] +
 \sum \{j \in P_IUse[p,i]\} P_IDist[p,i,j]*Output[p,j]^P_Alpha[p,i]
)^{P_Beta[p,i]};

Consumer Behavior
Endow: initial endowment of commodities
Demand: quantities of commodities demanded by the consumer
Utility: utility of the commodities demanded by the consumer
: determined from the nested CES Utility Function

param Endow \{c \in Consumers, k \in Commodities\};

var Demand \{c \in Consumers, C_TUse[c]\} \geq 0, := 1;

var Utility \{c \in Consumers, i \in C_INodes[c]\} =
C_Scale[c,i]*(
 \sum \{k \in C_FUse[c,i]\} C_AFDist[c,i,k]*Demand[c,k]^C_Alpha[c,i] +
 \sum \{j \in C_IUse[c,i]\} C_AIDist[c,i,j]*Utility[c,j]^C_Alpha[c,i]
)^{C_Beta[c,i]};
Model: negishi.mod

Negishi Weights

```
param Weights{c in Consumers} default 1 / card(Consumers);
```

Negishi Optimization Problem

```
maximize Welfare:
  sum{c in Consumers} Weights[c]*Utility[c,last(C_INodes[c])];

subject to

Market {k in Commodities}:
  sum{c in Consumers} Endow[c,k] + (if (k in Producers) then Output[k,last(P_INodes[k])]) >=
  sum{p in Producers: k in P_TUse[p]} Input[p,k] + sum{c in Consumers: k in C_TUse[c]} Demand[c,k];
```
set Commodities := G1 G2 F1 F2 F3;
set Consumers := C1 C2;
set Producers := G1 G2;
set Numeraire := F1;

Data: negishi.dat

set Commodities := G1 G2 F1 F2 F3;
set Consumers := C1 C2;
set Producers := G1 G2;
set Numeraire := F1;

set P_INodes[G1] := I1 I2 I3;
set P_FUse[G1, I1] := F1 F2;
set P_FUse[G1, I2] := F1 F3;
set P_FUse[G1, I3] := F2 F3 G2;
set P_IUse[G1, I1] := ;
set P_IUse[G1, I2] := ;
set P_IUse[G1, I3] := I1 I2;
set P_INodes[G2] := I1 I2;
set P_FUse[G2, I1] := F1 F2;
set P_FUse[G2, I2] := F3 G1;
set P_IUse[G2, I1] := ;
set P_IUse[G2, I2] := I1;
Model Formulation

- Route commodities through a network
 - \(\mathcal{N} \) is the set of nodes
 - \(\mathcal{A} \subseteq \mathcal{N} \times \mathcal{N} \) is the set of arcs
 - \(\mathcal{K} \) is the set of commodities
 - \(\alpha \) and \(\beta \) are the congestion parameters
 - \(b \) denotes the supply and demand

- Multicommodity network flow problem

\[
\begin{align*}
\text{max} & \quad \sum_{(i,j) \in \mathcal{A}} \left(\alpha_{i,j} f_{i,j} + \beta_{i,j} f_{i,j}^4 \right) \\
\text{subject to} & \quad \sum_{(i,j) \in \mathcal{A}} x_{i,j,k} \leq \sum_{(j,i) \in \mathcal{A}} x_{j,i,k} + b_{i,k} \quad \forall i \in \mathcal{N}, k \in \mathcal{K} \\
& \quad f_{i,j} = \sum_{k \in \mathcal{K}} x_{i,j,k} \quad \forall (i, j) \in \mathcal{A}
\end{align*}
\]
Model: network.mod

set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES := 1..3;

Nodes in network
Arics in network
Commodities
Model: network.mod

set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES := 1..3;

param b {NODES, COMMODITIES} default 0; # Supply/demand
check {k in COMMODITIES}:
 sum{i in NODES} b[i,k] >= 0;

param alpha{ARCS} >= 0; # Linear part
param beta{ARCS} >= 0; # Nonlinear part

var x{ARCS, COMMODITIES} >= 0; # Flow on arcs
var f{(i,j) in ARCS} = # Total flow
 sum {k in COMMODITIES} x[i,j,k];

minimize time:
 sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to
 conserve {i in NODES, k in COMMODITIES}:
 sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];
Model: network.mod

```plaintext
set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES := 1..3;

param b {NODES, COMMODITIES} default 0;
check {k in COMMODITIES}:
  sum {i in NODES} b[i,k] >= 0;

param alpha {ARCS} >= 0;
param beta {ARCS} >= 0;

var x {ARCS, COMMODITIES} >= 0;
var f {(i,j) in ARCS} =
  sum {k in COMMODITIES} x[i,j,k];

minimize time:
  sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);
subject to
  conserve {i in NODES, k in COMMODITIES}:
    sum {(i,j) in ARCS} x[i,j,k] <= sum {(j,i) in ARCS} x[j,i,k] + b[i,k];
```

Nodes in network
Arcs in network
Commodities

Supply/demand
Supply exceeds demand

Linear part
Nonlinear part

Flow on arcs
Total flow
Model: network.mod

set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES := 1..3;

param b {NODES, COMMODITIES} default 0;
check {k in COMMODITIES}:
 sum{i in NODES} b[i,k] >= 0;

param alpha{ARCS} >= 0;
param beta{ARCS} >= 0;

var x{ARCS, COMMODITIES} >= 0;
var f{(i,j) in ARCS} =
 sum {k in COMMODITIES} x[i,j,k];

minimize time:
 sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to
 conserve {i in NODES, k in COMMODITIES}:
 sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];
Data: network.dat

set NODES := 1 2 3 4 5;

param: ARCS : alpha beta =
 1 2 1 0.5
 1 3 1 0.4
 2 3 2 0.7
 2 4 3 0.1
 3 2 1 0.0
 3 4 4 0.5
 4 1 5 0.0
 4 5 2 0.1
 5 2 0 1.0;
Data: network.dat

set NODES := 1 2 3 4 5;

param: ARCS : alpha beta =
 1 2 1 0.5
 1 3 1 0.4
 2 3 2 0.7
 2 4 3 0.1
 3 2 1 0.0
 3 4 4 0.5
 4 1 5 0.0
 4 5 2 0.1
 5 2 0 1.0;

let b[1,1] := 7; # Node 1, Commodity 1 supply
let b[4,1] := -7; # Node 4, Commodity 1 demand
let b[2,2] := 3; # Node 2, Commodity 2 supply
let b[5,2] := -3; # Node 5, Commodity 2 demand
let b[3,3] := 5; # Node 1, Commodity 3 supply
let b[1,3] := -5; # Node 4, Commodity 3 demand

fix {i in NODES, k in COMMODITIES: (i,i) in ARCS} x[i,i,k] := 0;
Commands: network.cmd

Load model and data
model network.mod;
data network.dat;

Specify solver and options
option solver minos;
option minos_options "outlev=1";

Solve the instance
solve;

Output results
for {k in COMMODITIES} {
 printf "Commodity: %d\n", k > network.out;
 printf \{(i,j) in ARCS: x[i,j,k] > 0\} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;
 printf "\n" > network.out;
}
Output

ampl: include network.cmd;
MINOS 5.5: outlev=1
MINOS 5.5: optimal solution found.
12 iterations, objective 1505.526478
Nonlin evals: obj = 14, grad = 13.
ampl: quit;
Results: network.out

Commodity: 1
1.2 = 3.3775e+00
1.3 = 3.6225e+00
2.4 = 6.4649e+00
3.2 = 3.0874e+00
3.4 = 5.3510e-01

Commodity: 2
2.4 = 3.0000e+00
4.5 = 3.0000e+00

Commodity: 3
3.4 = 5.0000e+00
4.1 = 5.0000e+00
Initial Coordinate Descent: wardrop0.cmd

Load model and data
model network.mod;
data network.dat;

option solver minos;
option minos_options "outlev=1";

Coordinate descent method
fix {(i,j) in ARCS, k in COMMODITIES} x[i,j,k];
drop {i in NODES, k in COMMODITIES} conserve[i,k];

for {iter in 1..100} {
 for {k in COMMODITIES} {
 unfix {(i,j) in ARCS} x[i,j,k];
 restore {i in NODES} conserve[i,k];

 solve;

 fix {(i,j) in ARCS} x[i,j,k];
 drop {i in NODES} conserve[i,k];
 }
}

Output results
for {k in COMMODITIES} {
 printf "\nCommodity: %d\n", k > network.out;
 printf {(i,j) in ARCS: x[i,j,k] > 0} "\%d.\%d = \% 5.4e\n", i, j, x[i,j,k] > network.out;
}
Improved Coordinate Descent: wardrop.mod

```plaintext
set NODES;
set ARCS within NODES cross NODES;
set COMMODITIES := 1..3;

param b {NODES, COMMODITIES} default 0; # Supply/demand
param alpha {ARCS} >= 0; # Linear part
param beta {ARCS} >= 0; # Nonlinear part

var x {ARCS, COMMODITIES} >= 0; # Flow on arcs
var f {(i,j) in ARCS} = sum {k in COMMODITIES} x[i,j,k]; # Total flow

minimize time {k in COMMODITIES}:
    sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to
    conserve {i in NODES, k in COMMODITIES}:
        sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

problem subprob {k in COMMODITIES}: time[k], {i in NODES} conserve[i,k],
    {(i,j) in ARCS} x[i,j,k], f;
```
Improved Coordinate Descent: wardrop1.cmd

```plaintext
# Load model and data
model wardrop.mod;
data wardrop.dat;

# Specify solver and options
option solver minos;
option minos_options "outlev=1";

# Coordinate descent method
for {iter in 1..100} {
    for {k in COMMODITIES} {
        solve subprob[k];
    }
}

for {k in COMMODITIES} {
    printf "Commodity: %d\n", k > wardrop.out;
    printf \{(i,j) in ARCS: x[i,j,k] > 0\} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > wardrop.out;
    printf "\n" > wardrop.out;
}
```
Final Coordinate Descent: wardrop2.cmd

Load model and data
model wardrop.mod;
data wardrop.dat;

Specify solver and options
option solver minos;
option minos_options "outlev=1";

Coordinate descent method
param xold{ARCS, COMMODITIES};
param xnew{ARCS, COMMODITIES};

repeat {
 for {k in COMMODITIES} {
 problem subprob[k];
 let {(i,j) in ARCS} xold[i,j,k] := x[i,j,k];
 solve;
 let {(i,j) in ARCS} xnew[i,j,k] := x[i,j,k];
 }
} until (sum {(i,j) in ARCS, k in COMMODITIES} abs(xold[i,j,k] - xnew[i,j,k]) <= 1e-6);

for {k in COMMODITIES} {
 printf "Commodity: %d\n", k > wardrop.out;
 printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > wardrop.out;
 printf "\n" > wardrop.out;
}
Part III

Numerical Optimization II: Optimal Control
Model Formulation

- Maximize discounted utility
 - $u(\cdot)$ is the utility function
 - R is the retirement age
 - T is the terminal age
 - w is the wage
 - β is the discount factor
 - r is the interest rate

- Optimization problem

\[
\max_{s,c} \sum_{t=0}^{T} \beta^t u(c_t)
\]

subject to

\[
\begin{align*}
 s_{t+1} &= (1 + r)s_t + w - c_t & t &= 0, \ldots, R - 1 \\
 s_{t+1} &= (1 + r)s_t - c_t & t &= R, \ldots, T \\
 s_0 &= s_{T+1} = 0
\end{align*}
\]
Model: life1.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age
param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:
 sum {t in 0..T} beta^t * u[t];

subject to
 working {t in 0..R-1}:
 s[t+1] = (1+rate)*s[t] + wage - c[t];
 retired {t in R..T}:
 s[t+1] = (1+rate)*s[t] - c[t];
 initial:
 s[0] = 0;
 terminal:
 s[T+1] = 0;
Model: life1.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:
 sum {t in 0..T} beta^t * u[t];
subject to
 working {t in 0..R-1}:
 s[t+1] = (1+rate)*s[t] + wage - c[t];
 retired {t in R..T}:
 s[t+1] = (1+rate)*s[t] - c[t];
 initial:
 s[0] = 0;
 terminal:
 s[T+1] = 0;
Model: life1.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age
param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:
 sum {t in 0..T} beta^t * u[t];

subject to
 working {t in 0..R-1}:
 s[t+1] = (1+rate)*s[t] + wage - c[t];

 retired {t in R..T}:
 s[t+1] = (1+rate)*s[t] - c[t];

initial:
 s[0] = 0;

terminal:
 s[T+1] = 0;
Data: life.dat

param R := 75; # Retirement age
param T := 100; # Terminal age
param beta := 0.9; # Discount factor
param rate := 0.2; # Interest rate
param wage := 1.0; # Wage rate
Load model and data
model life1.mod;
data life.dat;

Specify solver and options
option solver mpec;

Solve the instance
solve;

Output results
printf {t in 0..T} "%2d %5.4e %5.4e\n", t, s[t], c[t] > out1.dat;
Output

ampl: include life1.cmd
AMPL interface to filter-MPEC: 20040408
: filter objective function = -3.24322
 constraint violation = 1.01433e-11
Optimal solution found
14 iterations (0 for feasibility)
Evals: obj = 15, constr = 16, grad = 16, Hes = 15
ampl: quit;
Plot of Output
Model: life2.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption
var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:
 sum {t in 0..T} beta^t * u[t];

subject to
 working {t in 0..R-1}:
 s[t+1] = (1+rate)*s[t] + wage - cbar[t] / beta^t;

 retired {t in R..T}:
 s[t+1] = (1+rate)*s[t] - cbar[t] / beta^t;

initial:
 s[0] = 0;

terminal:
 s[T+1] = 0;
Plot of Output
Model: life3.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age
param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption
var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:
 sum {t in 0..T} beta^t * u[t];

subject to
 working {t in 0..R-1}:
 beta^t*s[t+1] = beta^t*(1+rate)*s[t] + beta^t*wage - cbar[t];

 retired {t in R..T}:
 beta^t*s[t+1] = beta^t*(1+rate)*s[t] - cbar[t];

initial:
 s[0] = 0;

terminal:
 s[T+1] = 0;
Plot of Output
Model: life4.mod

param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption
var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption
var sbar{0..T+1}; # Scaled savings
var s{t in 0..T+1} = sbar[t] / beta^t; # Actual savings
var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:
 sum {t in 0..T} beta^t * u[t];

subject to
 working {t in 0..R-1}:
 sbar[t+1]/beta = (1+rate)*sbar[t] + beta^t*wage - cbar[t];
 retired {t in R..T}:
 sbar[t+1]/beta = (1+rate)*sbar[t] - cbar[t];

initial:
 sbar[0] = 0;

terminal:
 sbar[T+1] = 0;
Plot of Output
Solving Constrained Optimization Problems

\[
\min_x f(x) \quad \text{subject to} \quad c(x) \geq 0
\]

Main ingredients of solution approaches:
- **Local method**: given \(x_k \) (solution guess) find a step \(s \).
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - Interior-Point Method (IPM)
- **Globalization strategy**: converge from any starting point.
 - Trust region
 - Line search
- **Acceptance criteria**: filter or penalty function.
Interior-Point Method

- Reformulate optimization problem with slacks

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{subject to} & \quad c(x) = 0 \\
& \quad x \geq 0
\end{align*}
\]

- Construct perturbed optimality conditions

\[
F_\tau(x, y, z) = \begin{bmatrix}
\nabla f(x) - \nabla c(x)^T y - z \\
c(x) \\
Xz - \tau e
\end{bmatrix}
\]

- Central path \(\{x(\tau), y(\tau), z(\tau) \mid \tau > 0\} \)
- Apply Newton’s method for sequence \(\tau \downarrow 0 \)
Interior-Point Method

1. Compute a new iterate
 1.1 Solve linear system of equations

\[
\begin{bmatrix}
W_k & -\nabla c(x_k)^T & -I \\
\nabla c(x_k) & 0 & 0 \\
Z_k & 0 & X_k
\end{bmatrix}
\begin{pmatrix}
s_x \\
s_y \\
s_z
\end{pmatrix}
= -F_\mu(x_k, y_k, z_k)
\]

1.2 Accept or reject iterate
1.3 Update parameters

2. Check convergence
Convergence Issues

- Quadratic convergence – best outcome
- Globally infeasible – linear constraints infeasible
- Locally infeasible – nonlinear constraints locally infeasible
- Dual infeasible – dual problem is locally infeasible
- Unbounded objective – hard to detect
- Unbounded multipliers – constraint qualification not satisfied
- Duality gap
- Domain violations such as $\frac{1}{x}$ when $x = 0$
 - Make implicit constraints explicit
- Nonglobal solutions
 - Apply a multistart heuristic
 - Use global optimization solver
Some Available Software

- IPOPT – open source in COIN-OR
 - line-search filter algorithm
- KNITRO
 - trust-region Newton to solve barrier problem
 - ℓ_1 penalty barrier function
 - Newton system: direct solves or null-space CG
- LOQO
 - line-search method
 - Newton system: modified Cholesky factorization
Optimal Technology

Optimize energy production schedule and transition between old and new reduced-carbon technology to meet carbon targets

• Maximize social welfare

• Constraints
 • Limit total greenhouse gas emissions
 • Low-carbon technology less costly as it becomes widespread

• Assumptions on emission rates, economic growth, and energy costs
Model Formulation

- Finite time: \(t \in [0, T] \)
- Instantaneous energy output: \(q^o(t) \) and \(q^n(t) \)
- Cumulative energy output: \(x^o(t) \) and \(x^n(t) \)

\[
x^n(t) = \int_0^t q^n(\tau) \, d\tau
\]

- Discounted greenhouse gases emissions

\[
\int_0^T e^{-at} \left(b_o q^o(t) + b_n q^n(t) \right) \, dt \leq z_T
\]

- Consumer surplus \(S(Q(t), t) \) derived from utility

- Production costs
 - \(c_o \) per unit cost of old technology
 - \(c_n(x^n(t)) \) per unit cost of new technology (learning by doing)
Continuous-Time Model

\[
\max \{q^o, q^n, x^n, z\}(t)
\]

\[
\int_0^T e^{-rt} \left[S(q^o(t) + q^n(t), t) - c_0 q^o(t) - c_n(x^n(t))q^n(t) \right] dt
\]

subject to

\[
x^n(t) = q^n(t) \quad x(0) = x_0 = 0
\]

\[
\dot{z}(t) = e^{-at} (b_0 q^o(t) + b_n q^n(t)) \quad z(0) = z_0 = 0
\]

\[
z(T) \leq z_T
\]

\[
q^o(t) \geq 0, \quad q^n(t) \geq 0.
\]
Optimal Technology Penetration

Discretization:

- $t \in [0, T]$ replaced by $N + 1$ equally spaced points $t_i = ih$
- $h := T/N$ time integration step-length
- approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + h q_i^n$$
Optimal Technology Penetration

Discretization:

- $t \in [0, T]$ replaced by $N + 1$ equally spaced points $t_i = ih$
- $h := T/N$ time integration step-length
- approximate $q^n_i \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq^n_i$$

Output of new technology between $t = 24$ and $t = 35$
Solution with Varying h

Output for different discretization schemes and step-sizes
Optimal Technology Penetration

Add adjustment cost to model building of capacity:

Capital and Investment:

- $K^j(t)$ amount of capital in technology j at t.
- $I^j(t)$ investment to increase $K^j(t)$.
- initial capital level as \bar{K}^j_0:

Notation:

- $Q(t) = q^o(t) + q^n(t)$
- $C(t) = C^o(q^o(t), K^o(t)) + C^n(q^n(t), K^n(t))$
- $I(t) = I^o(t) + I^n(t)$
- $K(t) = K^o(t) + K^n(t)$
Optimal Technology Penetration

\[
\text{maximize } \left\{ \int_0^T e^{-rt} \left[\tilde{S}(Q(t), t) - C(t) - K(t) \right] dt + e^{-rT}K(T) \right\}
\]

subject to

\[
\begin{align*}
\dot{x}(t) &= q^n(t), \quad x(0) = x_0 = 0 \\
\dot{K}^j(t) &= -\delta K^j(t) + I^j(t), \quad K^j(0) = \bar{K}^j_0, \quad j \in \{o, n\} \\
\dot{z}(t) &= e^{-at}[b_o q^o(t) + b_n q^n(t)], \quad z(0) = z_0 = 0 \\
z(T) &\leq z_T \\
q^j(t) &\geq 0, \quad j \in \{o, n\} \\
I^j(t) &\geq 0, \quad j \in \{o, n\}
\end{align*}
\]
Optimal Technology Penetration

Optimal output, investment, and capital for 50% CO2 reduction.
Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

\[
\text{minimize } \frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt
\]

subject to

\[
\dot{y}(t) = \frac{1}{2} y(t) + u(t), \quad t \in [0, 1],
\]
\[
y(0) = 1.
\]

\[
\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},
\]
\[
u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.
\]
Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

\[\begin{align*}
\text{minimize} & \quad \frac{1}{2} \int_{0}^{1} u^2(t) + 2y^2(t) \, dt \\
\text{subject to} & \quad \dot{y}(t) = \frac{1}{2} y(t) + u(t), \ t \in [0, 1], \\
y(0) & = 1.
\end{align*} \]

\[\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)}, \]

\[u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}. \]

Discretize with 2nd order RK

\[\begin{align*}
\text{minimize} & \quad \frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2 \\
\text{subject to} & \quad (k = 0, \ldots, K):
\end{align*} \]

\[\begin{align*}
y_{k+1/2} & = y_k + \frac{h}{2} \left(\frac{1}{2} y_k + u_k \right), \\
y_{k+1} & = y_k + h \left(\frac{1}{2} y_{k+1/2} + u_{k+1/2} \right).
\end{align*} \]
Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) \, dt \\
\text{subject to} & \quad \dot{y}(t) = \frac{1}{2} y(t) + u(t), \quad t \in [0, 1], \\
& \quad y(0) = 1.
\end{align*}
\]

\[
\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)}, \\
u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.
\]

Discretize with 2nd order RK

\[
\begin{align*}
\text{minimize} & \quad \frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2 \\
\text{subject to} & \quad (k = 0, \ldots, K): \\
& \quad y_{k+1/2} = y_k + \frac{h}{2} \left(\frac{1}{2} y_k + u_k \right), \\
& \quad y_{k+1} = y_k + h \left(\frac{1}{2} y_{k+1/2} + u_{k+1/2} \right).
\end{align*}
\]

Discrete solution \((k = 0, \ldots, K)\):

\[
\begin{align*}
y_k & = 1, \quad y_{k+1/2} = 0, \\
u_k & = -\frac{4 + h}{2h}, \quad u_{k+1/2} = 0,
\end{align*}
\]
Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- Refine discretization: $h = 1$ discretization is nonsense
- Check implied discretization of adjoints
Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- Refine discretization: $h = 1$ discretization is nonsense
- Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize
- Consistent adjoint/dual discretization
- Discretized gradients can be wrong!
- Harder for inequality constraints
Ordered Sets

param V, integer; # Number of vertices
param E, integer; # Number of elements

set VERTICES := {1..V}; # Vertex indices
set ELEMENTS := {1..E}; # Element indices
set COORDS := {1..3} ordered; # Spatial coordinates

param T{ELEMENTS, 1..4} in VERTICES; # Tetrahedral elements

var x{VERTICES, COORDS}; # Position of vertices

var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}
 (x[T[e,j], i] - x[T[e,1], i])^2;

var area{e in ELEMENTS} = sum{i in COORDS}
 (x[T[e,2], i] - x[T[e,1], i]) *
 ((x[T[e,3], nextw(i)] - x[T[e,1], nextw(i)]) *
 (x[T[e,4], prevw(i)] - x[T[e,1], prevw(i)]) -
 (x[T[e,3], prevw(i)] - x[T[e,1], prevw(i)]) *
 (x[T[e,4], nextw(i)] - x[T[e,1], nextw(i)]));

minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ^ (2 / 3);
Circular Sets

param V, integer; # Number of vertices
param E, integer; # Number of elements

set VERTICES := {1..V}; # Vertex indices
set ELEMENTS := {1..E}; # Element indices
set COORDS := {1..3} circular; # Spatial coordinates

param T{ELEMENTS, 1..4} in VERTICES; # Tetrahedral elements

var x{VERTICES, COORDS}; # Position of vertices

var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}
(x[T[e,j], i] - x[T[e,1], i])^2;

var area{e in ELEMENTS} = sum{i in COORDS}
(x[T[e,2], i] - x[T[e,1], i]) *
((x[T[e,3], next(i)] - x[T[e,1], next(i)]) *
 (x[T[e,4], prev(i)] - x[T[e,1], prev(i)]) -
 (x[T[e,3], prev(i)] - x[T[e,1], prev(i)]) *
 (x[T[e,4], next(i)] - x[T[e,1], next(i)]));

minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ^ (2 / 3);
Part IV

Numerical Optimization III: Complementarity Constraints
Nash Games

- Non-cooperative game played by \(n \) individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
Nash Games

- Non-cooperative game played by \(n \) individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium \((x^*, y^*) \)

\[
\begin{align*}
x^* & \in \left\{ \arg \min_{x \geq 0} f_1(x, y^*) \right. \\
& \quad \text{subject to } c_1(x) \leq 0 \\
y^* & \in \left\{ \arg \min_{y \geq 0} f_2(x^*, y) \right. \\
& \quad \text{subject to } c_2(y) \leq 0
\end{align*}
\]
Nash Games

- Non-cooperative game played by n individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium (x^*, y^*)

$$\begin{align*}
x^* \in & \left\{ \arg \min_{x \geq 0} f_1(x, y^*) \right. \\
& \text{subject to } c_1(x) \leq 0 \\
y^* \in & \left\{ \arg \min_{y \geq 0} f_2(x^*, y) \right. \\
& \text{subject to } c_2(y) \leq 0
\end{align*}$$

- Many applications in economics
 - Bimatrix games
 - Cournot duopoly models
 - General equilibrium models
 - Arrow-Debreu models
Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x, \cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$\begin{align*}
\min_{x \geq 0} & \quad f_1(x, y^*) \\
\text{subject to} & \quad c_1(x) \leq 0
\end{align*}$$

$$\Leftrightarrow \begin{align*}
0 \leq x & \perp \nabla_x f_1(x, y^*) + \lambda_1^T \nabla_x c_1(x) \geq 0 \\
0 \leq \lambda_1 & \perp -c_1(x) \geq 0
\end{align*}$$
Complementarity Formulation

• Assume each optimization problem is convex
 • $f_1(\cdot, y)$ is convex for each y
 • $f_2(x, \cdot)$ is convex for each x
 • $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification

• Then the first-order conditions are necessary and sufficient

\[
\begin{align*}
\min_{y \geq 0} & \quad f_2(x^*, y) \\
\text{subject to} & \quad c_2(y) \leq 0
\end{align*}
\quad \Leftrightarrow \quad \begin{cases}
0 \leq y & \perp \nabla_y f_2(x^*, y) + \lambda_2^T \nabla_y c_2(y) \geq 0 \\
0 \leq \lambda_2 & \perp -c_2(y) \geq 0
\end{cases}
\]
Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x, \cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification

- Then the first-order conditions are necessary and sufficient

\[
\begin{align*}
0 \leq x & \perp \nabla_x f_1(x, y) + \lambda_1^T \nabla_x c_1(x) \geq 0 \\
0 \leq y & \perp \nabla_y f_2(x, y) + \lambda_2^T \nabla_y c_2(y) \geq 0 \\
0 \leq \lambda_1 & \perp -c_1(y) \geq 0 \\
0 \leq \lambda_2 & \perp -c_2(y) \geq 0
\end{align*}
\]

- Nonlinear complementarity problem
 - Square system – number of variables and constraints the same
 - Each solution is an equilibrium for the Nash game
Model Formulation

- Economy with n agents and m commodities
 - $e \in \mathbb{R}^{n \times m}$ are the endowments
 - $\alpha \in \mathbb{R}^{n \times m}$ and $\beta \in \mathbb{R}^{n \times m}$ are the utility parameters
 - $p \in \mathbb{R}^m$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$
\max_{x_{i,*} \geq 0} \sum_{k=1}^{m} \frac{\alpha_{i,k}(1 + x_{i,k})^{1-\beta_{i,k}}}{1 - \beta_{i,k}}
$$

subject to

$$
\sum_{k=1}^{m} p_k (x_{i,k} - e_{i,k}) \leq 0
$$

- Market k sets price for the commodity

$$
0 \leq p_k \perp \sum_{i=1}^{n} (e_{i,k} - x_{i,k}) \geq 0
$$
Model: cge.mod

```plaintext
set AGENTS;                     # Agents
set COMMODITIES;                # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;

var x {AGENTS, COMMODITIES};    # Consumption (no bounds!)
var l {AGENTS};                 # Multipliers (no bounds!)
var p {COMMODITIES};            # Prices (no bounds!)

var du {i in AGENTS, k in COMMODITIES} =
    alpha[i,k] / (1 + x[i,k])^beta[i,k]; # Marginal prices

subject to
    optimality {i in AGENTS, k in COMMODITIES}:
        0 <= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;

    budget {i in AGENTS}:
        0 <= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

    market {k in COMMODITIES}:
        0 <= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;
```
Data: cge.dat

set AGENTS := Jorge, Sven, Todd;
set COMMODITIES := Books, Cars, Food, Pens;

param alpha : Books Cars Food Pens :=
 Jorge 1 1 1 1
 Sven 1 2 3 4
 Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=
 Books 1.5 2 0.6
 Cars 1.6 3 0.7
 Food 1.7 2 2.0
 Pens 1.8 2 2.5;
Commands: cge.cmd

Load model and data
model cge.mod;
data cge.dat;

Specify solver and options
option presolve 0;
option solver "pathampl";

Solve the instance
solve;

Output results
printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cge.out;
printf "\n" > cge.out;
printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cge.out;
Results: cge.out

Jorge Books: 8.9825e-01
Jorge Cars: 1.4651e+00
Jorge Food: 1.2021e+00
Jorge Pens: 6.8392e-01
Sven Books: 2.5392e-01
Sven Cars: 7.2054e-01
Sven Food: 1.6271e+00
Sven Pens: 1.4787e+00
Todd Books: 1.8478e+00
Todd Cars: 8.1431e-01
Todd Food: 1.7081e-01
Todd Pens: 8.3738e-01

Books: 1.0825e+01
Cars: 6.6835e+00
Food: 7.3983e+00
Pens: 1.1081e+01
Commands: cgenum.cmd

Load model and data
model cge.mod;
data cge.dat;

Specify solver and options
option presolve 0;
option solver "pathampl";

Solve the instance
drop market['Books'];
fix p['Books'] := 1;
solve;

Output results
printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgenum.out;
printf "\n" > cgenum.out;
printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgenum.out;
Results: cgenum.out

Jorge Books: 8.9825e-01
Jorge Cars: 1.4651e+00
Jorge Food: 1.2021e+00
Jorge Pens: 6.8392e-01
Sven Books: 2.5392e-01
Sven Cars: 7.2054e-01
Sven Food: 1.6271e+00
Sven Pens: 1.4787e+00
Todd Books: 1.8478e+00
Todd Cars: 8.1431e-01
Todd Food: 1.7081e-01
Todd Pens: 8.3738e-01

Books: 1.0000e+00
Cars: 6.1742e-01
Food: 6.8345e-01
Pens: 1.0237e+00
Pitfalls

- Nonsquare systems
 - Side variables
 - Side constraints
- Orientation of equations
 - Skew symmetry preferred
 - Proximal point perturbation
- AMPL presolve
 - option presolve 0;
Newton Method for Nonlinear Equations
Newton Method for Nonlinear Equations

![Graph showing Newton's method for nonlinear equations.](image-url)
Newton Method for Nonlinear Equations
Newton Method for Nonlinear Equations

\[F(x) \]
Methods for Complementarity Problems

- **Sequential linearization methods (PATH)**
 1. Solve the linear complementarity problem

 \[0 \leq x \perp F(x_k) + \nabla F(x_k)(x - x_k) \geq 0 \]
 2. Perform a line search along merit function
 3. Repeat until convergence
Methods for Complementarity Problems

- Sequential linearization methods (PATH)
 1. Solve the linear complementarity problem
 \[0 \leq x \perp F(x_k) + \nabla F(x_k)(x - x_k) \geq 0 \]
 2. Perform a line search along merit function
 3. Repeat until convergence

- Semismooth reformulation methods (SEMI)
 - Solve linear system of equations to obtain direction
 - Globalize with a trust region or line search
 - Less robust in general

- Interior-point methods
Semismooth Reformulation

• Define Fischer-Burmeister function

\[\phi(a, b) := a + b - \sqrt{a^2 + b^2} \]

\[\phi(a, b) = 0 \text{ iff } a \geq 0, \ b \geq 0, \text{ and } ab = 0 \]

• Define the system

\[[\Phi(x)]_i = \phi(x_i, F_i(x)) \]

• \(x^* \) solves complementarity problem iff \(\Phi(x^*) = 0 \)

• Nonsmooth system of equations
Semismooth Algorithm

1. Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k:

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.
Semismooth Algorithm

1. Calculate \(H^k \in \partial_B \Phi(x^k) \) and solve the following system for \(d^k \):

\[
H^k d^k = -\Phi(x^k)
\]

If this system either has no solution, or

\[
\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}
\]

is not satisfied, let \(d^k = -\nabla \Psi(x^k) \).

2. Compute smallest nonnegative integer \(i^k \) such that

\[
\Psi(x^k + \beta i^k d^k) \leq \Psi(x^k) + \sigma \beta i^k \nabla \Psi(x^k) d^k
\]

3. Set \(x^{k+1} = x^k + \beta i^k d^k \), \(k = k + 1 \), and go to 1.
Convergence Issues

- Quadratic convergence – best outcome
- Linear convergence
 - Far from a solution – $r(x_k)$ is large
 - Jacobian is incorrect – disrupts quadratic convergence
 - Jacobian is rank deficient – $\|\nabla r(x_k)\|$ is small
 - Converge to local minimizer – guarantees rank deficiency
 - Limits of finite precision arithmetic
 1. $r(x_k)$ converges quadratically to small number
 2. $r(x_k)$ hovers around that number with no progress
- Domain violations such as $\frac{1}{x}$ when $x = 0$
Some Available Software

- PATH – sequential linearization method
- MILES – sequential linearization method
- SEMI – semismooth linesearch method
- TAO – Toolkit for Advanced Optimization
 - SSLS – full-space semismooth linesearch methods
 - ASLS – active-set semismooth linesearch methods
 - RSCS – reduced-space method
Definition

- Leader-follower game
 - Dominant player (leader) selects a strategy y^*
 - Then followers respond by playing a Nash game

$$x^*_i \in \left\{ \begin{array}{l} \arg \min_{x_i \geq 0} f_i(x, y) \\ \text{subject to } c_i(x_i) \leq 0 \end{array} \right\}$$

- Leader solves optimization problem with equilibrium constraints

$$\min_{y \geq 0, x, \lambda} g(x, y)$$
subject to

$$h(y) \leq 0$$
$$0 \leq x_i \perp \nabla x_i f_i(x, y) + \lambda_i^T \nabla x_i c_i(x_i) \geq 0$$
$$0 \leq \lambda_i \perp -c_i(x_i) \geq 0$$

- Many applications in economics
 - Optimal taxation
 - Tolling problems
Model Formulation

• Economy with n agents and m commodities
 • $e \in \mathbb{R}^{n \times m}$ are the endowments
 • $\alpha \in \mathbb{R}^{n \times m}$ and $\beta \in \mathbb{R}^{n \times m}$ are the utility parameters
 • $p \in \mathbb{R}^m$ are the commodity prices
• Agent i maximizes utility with budget constraint

$$
\max_{x_i, \star \geq 0} \sum_{k=1}^{m} \frac{\alpha_i,k (1 + x_i,k)^{1-\beta_i,k}}{1 - \beta_i,k}
$$
subject to

$$
\sum_{k=1}^{m} p_k (x_i,k - e_i,k) \leq 0
$$

• Market k sets price for the commodity

$$
0 \leq p_k \perp \sum_{i=1}^{n} (e_i,k - x_i,k) \geq 0
$$
Model: cgempec.mod

set LEADER; # Leader
set FOLLOWERS; # Followers
set AGENTS := LEADER union FOLLOWERS; # All the agents
cHECK: (card(LEADER) == 1 && card(LEADER inter FOLLOWERS) == 0);

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;

var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)
var l {FOLLOWERS}; # Multipliers (no bounds!)
var p {COMMODITIES}; # Prices (no bounds!)

var u {i in AGENTS} =
 sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);
var du {i in AGENTS, k in COMMODITIES} =
 alpha[i,k] / (1 + x[i,k])^beta[i,k]; # Marginal prices
Model: cgempec.mod

maximize
 objective: sum {i in LEADER} u[i];

subject to
 leader_budget {i in LEADER}:
 sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

 optimality {i in FOLLOWERS, k in COMMODITIES}:
 0 <= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;

 budget {i in FOLLOWERS}:
 0 <= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

 market {k in COMMODITIES}:
 0 <= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;
Data: cgempec.dat

```plaintext
set LEADER := Jorge;
set FOLLOWERS := Sven, Todd;
set COMMODITIES := Books, Cars, Food, Pens;

param alpha : Books Cars Food Pens :=
    Jorge 1 1 1 1
    Sven 1 2 3 4
    Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=
    Books 1.5 2 0.6
    Cars 1.6 3 0.7
    Food 1.7 2 2.0
    Pens 1.8 2 2.5;
```

Load model and data
model cgempec.mod;
data cgempec.dat;

Specify solver and options
option presolve 0;
option solver "loqo";

Solve the instance
drop market['Books'];
fix p['Books'] := 1;
solve;

Output results
printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgempec.out;
printf "\n" > cgempec.out;
printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgempec.out;
Output: cgempec.out

<table>
<thead>
<tr>
<th></th>
<th>Stackleberg</th>
<th>Nash Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorge Books</td>
<td>9.2452e-01</td>
<td>Jorge Books:</td>
</tr>
<tr>
<td>Jorge Cars</td>
<td>1.3666e+00</td>
<td>1.4651e+00</td>
</tr>
<tr>
<td>Jorge Food</td>
<td>1.1508e+00</td>
<td>1.2021e+00</td>
</tr>
<tr>
<td>Jorge Pens</td>
<td>7.7259e-01</td>
<td>6.8392e-01</td>
</tr>
<tr>
<td>Sven Books</td>
<td>2.5499e-01</td>
<td>2.5392e-01</td>
</tr>
<tr>
<td>Sven Cars</td>
<td>7.4173e-01</td>
<td>7.2054e-01</td>
</tr>
<tr>
<td>Sven Food</td>
<td>1.6657e+00</td>
<td>1.6271e+00</td>
</tr>
<tr>
<td>Sven Pens</td>
<td>1.4265e+00</td>
<td>1.4787e+00</td>
</tr>
<tr>
<td>Todd Books</td>
<td>1.8205e+00</td>
<td>1.8478e+00</td>
</tr>
<tr>
<td>Todd Cars</td>
<td>8.9169e-01</td>
<td>8.1431e-01</td>
</tr>
<tr>
<td>Todd Food</td>
<td>1.8355e-01</td>
<td>1.7081e-01</td>
</tr>
<tr>
<td>Todd Pens</td>
<td>8.0093e-01</td>
<td>8.3738e-01</td>
</tr>
</tbody>
</table>

Books: 1.0000e+00 Books: 1.0000e+00
Cars: 5.9617e-01 Cars: 6.1742e-01
Food: 6.6496e-01 Food: 6.8345e-01
Pens: 1.0700e+00 Pens: 1.0237e+00
Nonlinear Programming Formulation

\[
\begin{align*}
\min_{x,y,\lambda,s,t \geq 0} & \quad g(x, y) \\
\text{subject to} & \quad h(y) \leq 0 \\
& \quad s_i = -c_i(x_i) \\
& \quad t_i = -c_i(x_i) \\
& \quad \sum_i (s_i^T x_i + \lambda_i t_i) \leq 0
\end{align*}
\]

- Constraint qualification fails
 - Lagrange multiplier set unbounded
 - Constraint gradients linearly dependent
 - Central path does not exist
- Able to prove convergence results for some methods
- Reformulation very successful and versatile in practice
Penalization Approach

\[
\begin{align*}
\min_{x,y,\lambda,s,t \geq 0} & \quad g(x, y) + \pi \sum_i \left(s_i^T x_i + \lambda_i t_i \right) \\
\text{subject to} & \quad h(y) \leq 0 \\
& \quad s_i = \nabla_{x_i} f_i(x, y) + \lambda_i^T \nabla_{x_i} c_i(x_i) \\
& \quad t_i = -c_i(x_i)
\end{align*}
\]

- Optimization problem satisfies constraint qualification
- Need to increase \(\pi \)

Relaxation Approach

\[
\begin{align*}
\min_{x, y, \lambda, s, t \geq 0} & \quad g(x, y) \\
\text{subject to} & \quad h(y) \leq 0 \\
& \quad s_i = \nabla x f_i(x, y) + \lambda^T_i \nabla x c_i(x_i) \\
& \quad t_i = -c_i(x_i) \\
& \quad \sum_i (s_i^T x_i + \lambda_i t_i) \leq \tau
\end{align*}
\]

- Need to decrease \(\tau \)
Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
 - Try different algorithms
 - Compute feasible starting point
- Stationary points may have descent directions
 - Checking for descent is an exponential problem
 - Strong stationary points found in certain cases
- Many stationary points – global optimization
Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
 - Try different algorithms
 - Compute feasible starting point
- Stationary points may have descent directions
 - Checking for descent is an exponential problem
 - Strong stationary points found in certain cases
- Many stationary points – global optimization
- Formulation of follower problem
 - Multiple solutions to Nash game
 - Nonconvex objective or constraints
 - Existence of multipliers
Model Formulation

- Firm $f \in F$ chooses output x_f to maximize profit
 - u is the utility function
 $$u = \left(1 + \sum_{f \in F} x_f^\alpha \right)^{\frac{\eta}{\alpha}}$$
 - α and η are parameters
 - c_f is the unit cost for each firm
- In particular, for each firm $f \in F$
 $$x_f^* \in \arg \max_{x_f \geq 0} \left(\frac{\partial u}{\partial x_f} - c_f \right) x_f$$
- First-order optimality conditions
 $$0 \leq x_f \perp c_f - \frac{\partial u}{\partial x_f} - x_f \frac{\partial^2 u}{\partial x_f^2} \geq 0$$
Model: oligopoly.mod

set FIRMS; # Firms in problem

param c {FIRMS}; # Unit cost
param alpha > 0; # Constants
param eta > 0;

var x {FIRMS} default 0.1; # Output (no bounds!)

var s = 1 + sum {f in FIRMS} x[f]^alpha; # Summation term
var u = s^(eta/alpha); # Utility
var du {f in FIRMS} = # Marginal price
teta * s^(eta/alpha - 1) * x[f]^(alpha - 1);
var dudu {f in FIRMS} = # Derivative
teta * (eta - alpha) * s^(eta/alpha - 2) * x[f]^(2 * alpha - 2) +
eteta * (alpha - 1) * s^(eta/alpha - 1) * x[f]^(alpha - 2);

compl {f in FIRMS}:
0 <= x[f] complements c[f] - du[f] - x[f] * dudu[f] >= 0;
Data: oligopoly.dat

param: FIRMS : c :=
 1 0.07
 2 0.08
 3 0.09;

param alpha := 0.999;
param eta := 0.2;
Commands: oligopoly.cmd

Load model and data
model oligopoly.mod;
data oligopoly.dat;

Specify solver and options
option presolve 0;
option solver "pathampl";

Solve complementarity problem
solve;

Output the results
printf {f in FIRMS} "Output for firm %2d: % 5.4e\n", f, x[f] > oligcomp.out;
Results: oligopoly.out

Output for firm 1: 8.3735e-01
Output for firm 2: 5.0720e-01
Output for firm 3: 1.7921e-01
Model Formulation

- Players select strategies to minimize loss
 - $p \in \mathbb{R}^n$ is the probability player 1 chooses each strategy
 - $q \in \mathbb{R}^m$ is the probability player 2 chooses each strategy
 - $A \in \mathbb{R}^{n \times m}$ is the loss matrix for player 1
 - $B \in \mathbb{R}^{n \times m}$ is the loss matrix for player 2

- Optimization problem for player 1

 $$\begin{align*}
 \min_{0 \leq p \leq 1} & \quad p^T A q \\
 \text{subject to} & \quad e^T p = 1
 \end{align*}$$

- Optimization problem for player 2

 $$\begin{align*}
 \min_{0 \leq q \leq 1} & \quad p^T B q \\
 \text{subject to} & \quad e^T q = 1
 \end{align*}$$
Model Formulation

- Players select strategies to minimize loss
 - \(p \in \mathbb{R}^n \) is the probability player 1 chooses each strategy
 - \(q \in \mathbb{R}^m \) is the probability player 2 chooses each strategy
 - \(A \in \mathbb{R}^{n \times m} \) is the loss matrix for player 1
 - \(B \in \mathbb{R}^{n \times m} \) is the loss matrix for player 2

- Complementarity problem

\[
\begin{align*}
0 \leq p & \leq 1 \ Perp Aq - \lambda_1 \\
0 \leq q & \leq 1 \ Perp B^T p - \lambda_2 \\
\lambda_1 & \text{ free} \ Perp e^T p = 1 \\
\lambda_2 & \text{ free} \ Perp e^T q = 1
\end{align*}
\]
Model: bimatrix1.mod

param n > 0, integer; # Strategies for player 1
param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1
param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i
var q{1..m}; # Probability player 2 selects strategy j
var lambda1; # Multiplier for constraint
var lambda2; # Multiplier for constraint

subject to
 opt1 {i in 1..n}: # Optimality conditions for player 1
 0 <= p[i] <= 1 complements sum{j in 1..m} A[i,j] * q[j] - lambda1;

 opt2 {j in 1..m}: # Optimality conditions for player 2
 0 <= q[j] <= 1 complements sum{i in 1..n} B[i,j] * p[i] - lambda2;

 con1:
 lambda1 complements sum{i in 1..n} p[i] = 1;

 con2:
 lambda2 complements sum{j in 1..m} q[j] = 1;
Model: bimatrix2.mod

param n > 0, integer; # Strategies for player 1
param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1
param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i
var q{1..m}; # Probability player 2 selects strategy j
var lambda1; # Multiplier for constraint
var lambda2; # Multiplier for constraint

subject to
 opt1 {i in 1..n}: # Optimality conditions for player 1
 0 <= p[i] complements sum{j in 1..m} A[i,j] * q[j] - lambda1 >= 0;

 opt2 {j in 1..m}: # Optimality conditions for player 2
 0 <= q[j] complements sum{i in 1..n} B[i,j] * p[i] - lambda2 >= 0;

 con1:
 0 <= lambda1 complements sum{i in 1..n} p[i] >= 1;

 con2:
 0 <= lambda2 complements sum{j in 1..m} q[j] >= 1;
Model: bimatrix3.mod

param n > 0, integer; # Strategies for player 1
param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1
param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i
var q{1..m}; # Probability player 2 selects strategy j

subject to
 opt1 {i in 1..n}: # Optimality conditions for player 1
 0 <= p[i] complements sum{j in 1..m} A[i,j] * q[j] >= 1;

 opt2 {j in 1..m}: # Optimality conditions for player 2
 0 <= q[j] complements sum{i in 1..n} B[i,j] * p[i] >= 1;
Part V

Numerical Optimization IV: Extensions
Global Optimization

I need to find the GLOBAL minimum!

- use any NLP solver (often work well!)
- use the multi-start trick from previous slides
- global optimization based on branch-and-reduce: BARON
 - constructs global underestimators
 - refines region by branching
 - tightens bounds by solving LPs
 - solve problems with 100s of variables
- “voodoo” solvers: genetic algorithm & simulated annealing
 no convergence theory ... usually worse than deterministic
Derivative-Free Optimization

My model does not have derivatives!

- Change your model ... good models have derivatives!
- pattern-search methods for \(\min f(x) \)
 - evaluate \(f(x) \) at stencil \(x_k + \Delta M \)
 - move to new best point
 - extend to NLP; some convergence theory h
- matlab: NOMADm.m; parallel APPSPACK

- solvers based on building interpolating quadratic models
 - DFO project on www.coin-or.org
 - Mike Powell’s NEWUOA quadratic model

- “voodoo” solvers: genetic algorithm & simulated annealing
 no convergence theory ... usually worse than deterministic
Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

- modeling discrete choices \Rightarrow 0–1 variables
- modeling integer decisions \Rightarrow integer variables
 e.g. number of different stocks in portfolio (8-10)
 not number of beers sold at Goose Island (millions)

MINLP solvers:

- branch (separate $z_i = 0$ and $z_i = 1$) and cut
- solve millions of NLP relaxations: MINLPBB, SBB
- outer approximation: iterate MILP and NLP solvers
 BONMIN (COIN-OR) & FilMINT on NEOS
Portfolio Management

- \(N \): Universe of asset to purchase
- \(x_i \): Amount of asset \(i \) to hold
- \(B \): Budget

\[
\text{minimize } u(x) \quad \text{subject to } \sum_{i \in N} x_i = B, \quad x \geq 0
\]
Portfolio Management

- N: Universe of asset to purchase
- x_i: Amount of asset i to hold
- B: Budget

\[
\text{minimize } u(x) \quad \text{subject to } \sum_{i \in N} x_i = B, \quad x \geq 0
\]

- **Markowitz**: $u(x) \overset{\text{def}}{=} -\alpha^T x + \lambda x^T Q x$
 - α: maximize expected returns
 - Q: variance-covariance matrix of expected returns
 - λ: minimize risk; aversion parameter
More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of “benchmark” holdings
- Benchmark Tracking: $u(x) \overset{\text{def}}{=} (x - b)^T Q (x - b)$
 - Constraint on $\mathbb{E}[\text{Return}]: \alpha^T x \geq r$
More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of “benchmark” holdings

- **Benchmark Tracking:** $u(x) \overset{\text{def}}{=} (x - b)^T Q(x - b)$
 - Constraint on $\mathbb{E}[\text{Return}]: \alpha^T x \geq r$

- **Limit Names:** $|i \in N : x_i > 0| \leq K$
 - Use binary indicator variables to model the implication $x_i > 0 \Rightarrow y_i = 1$
 - Implication modeled with variable upper bounds:

 $$x_i \leq By_i \quad \forall i \in N$$

- $\sum_{i \in N} y_i \leq K$
Optimization Conclusions

Optimization is General Modeling Paradigm
- linear, nonlinear, equations, inequalities
- integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages
- express optimization problems
- use automatic differentiation
- easy access to state-of-the-art solvers

Optimization Software
- open-source: COIN-OR, IPOPT, Soplex, & ASTROS (soon)
- current solver limitations on laptop:
 - 1,000,000 variables/constraints for LPs
 - 100,000 variables/constraints for NLPs/NCPs
 - 100 variables/constraints for global optimization
 - 500,000,000 variable LP on BlueGene/P