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Abstract In this chapter we discuss conceptually high dimensional sparse econo-
metric models as well as estimation of these models using `1-penalization and post-
`1-penalization methods. Focusing on linear and nonparametric regression frame-
works, we discuss various econometric examples, present basic theoretical results,
and illustrate the concepts and methods with Monte Carlo simulations and an empir-
ical application. In the application, we examine and confirm the empirical validity
of the Solow-Swan model for international economic growth.

1 The High Dimensional Sparse Econometric Model

We consider linear, high dimensional sparse (HDS) regression models in economet-
rics. The HDS regression model has a large number of regressors p, possibly much
larger than the sample size n, but only a relatively small number s < n of these re-
gressors are important for capturing accurately the main features of the regression
function. The latter assumption makes it possible to estimate these models effec-
tively by searching for approximately the right set of the regressors, using `1-based
penalization methods. In this chapter we will review the basic theoretical properties
of these procedures, established in the works of [8, 10, 18, 17, 7, 15, 13, 27, 26],
among others (see [20, 7] for a detailed literature review). In this section, we review
the modeling foundations as well as motivating examples for these procedures, with
emphasis on applications in econometrics.

Let us first consider an exact or parametric HDS regression model, namely,
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yi = x′iβ0 + εi, εi ∼ N(0,σ2), β0 ∈ Rp, i = 1, . . . ,n, (1)

where yi’s are observations of the response variable, xi’s are observations of p-
dimensional fixed regressors, and εi’s are i.i.d. normal disturbances, where possibly
p > n. The key assumption of the exact model is that the true parameter value β0 is
sparse, having only s < n non-zero components with support denoted by

T = support(β0)⊂ {1, . . . , p}. (2)

Next let us consider an approximate or nonparametric HDS model. To this end, let
us introduce the regression model

yi = f (zi)+ εi, εi ∼ N(0,σ2), i = 1, . . . ,n, (3)

where yi is the outcome, zi is a vector of elementary fixed regressors, z 7→ f (z) is the
true, possibly non-linear, regression function, and εi’s are i.i.d. normal disturbances.
We can convert this model into an approximate HDS model by writing

yi = x′iβ0 + ri + εi, i = 1, . . . ,n, (4)

where xi = P(zi) is a p-dimensional regressor formed from the elementary regressors
by applying, for example, polynomial or spline transformations, β is a conformable
parameter vector, whose “true” value β0 has only s < n non-zero components with
support denoted as in (2), and ri := r(zi) = f (zi)− x′iβ0 is the approximation error.
We shall define the true value β0 more precisely in the next section. For now, it is
important to note only that we assume there exists a value β0 having only s non-zero
components that sets the approximation error ri to be small.

Before considering estimation, a natural question is whether exact or approxi-
mate HDS models make sense in econometric applications. In order to answer this
question it is helpful to consider the following example, in which we abstract from
estimation completely and only ask whether it is possible to accurately describe
some structural econometric function f (z) using a low-dimensional approximation
of the form P(z)′β0. In particular, we are interested in improving upon the conven-
tional low-dimensional approximations.

Example 1: Sparse Models for Earning Regressions. In this example we con-
sider a model for the conditional expectation of log-wage yi given education zi,
measured in years of schooling. Since measured education takes on a finite number
of years, we can expand the conditional expectation of wage yi given education zi:

E[yi|zi] =
p

∑
j=1

β0 jPj(zi), (5)

using some dictionary of approximating functions P1(zi), . . . ,Pp(zi), such as polyno-
mial or spline transformations in zi and/or indicator variables for levels of zi. In fact,
since we can consider an overcomplete dictionary, the representation of the function
may not be unique, but this is not important for our purposes.
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A conventional sparse approximation employed in econometrics is, for example,

f (zi) := E[yi|zi] = β̃1P1(zi)+ · · ·+ β̃sPs(zi)+ r̃i, (6)

where the Pj’s are low-order polynomials or splines, with typically s = 4 or 5 terms,
but there is no guarantee that the approximation error r̃i in this case is small, or that
these particular polynomials form the best possible s-dimensional approximation.
Indeed, we might expect the function E[yi|zi] to exhibit oscillatory behavior near
the schooling levels associated with advanced degrees, such as MBA or MD. Low-
degree polynomials may not be able to capture this behavior very well, resulting in
large approximation errors r̃i’s.

Therefore, the question is: With the same number of parameters, can we find a
much better approximation? In other words, can we find some higher-order terms in
the expansion (5) which will provide a higher-quality approximation? More specif-
ically, can we construct an approximation

f (zi) := E[yi|zi] = βk1 Pk1(zi)+ · · ·+βksPks(zi)+ ri, (7)

for some regressor indices k1, . . . ,ks selected from {1, . . . , p}, that is accurate and
much better than (6), in the sense of having a much smaller approximation error ri?

Obviously the answer to the latter question depends on how complex the be-
havior of the true regression function (5) is. If the behavior is not complex, then
low-dimensional approximation should be accurate. Moreover, it is clear that the
second approximation (7) is weakly better than the first (6), and can be much better
if there are some important high-order terms in (5) that are completely missed by
the first approximation. Indeed, in the context of the earning function example, such
important high-order terms could capture abrupt positive changes in earning associ-
ated with advanced degrees such as MBA or MD. Thus, the answer to the question
depends strongly on the empirical context.

Consider for example the earnings of prime age white males in the 2000 U.S.
Census (see e.g., Angrist, Chernozhukov and Fernandez-Val [2]). Treating this data
as the population data, we can then compute f (zi) = E[yi|zi] without error. Fig-
ure 1 plots this function. (Of course, such a strategy is not generally available in
the empirical work, since the population data are generally not available.) We then
construct two sparse approximations and also plot them in Figure 1: the first is the
conventional one, of the form (6), with P1, . . . ,Ps representing an (s− 1)-degree
polynomial, and the second is an approximation of the form (7), with Pk1 , . . . , Pks

consisting of a constant, a linear term, and two linear splines terms with knots lo-
cated at 16 and 19 years of schooling (in the case of s = 5 a third knot is located
at 17). In fact, we find the latter approximation automatically using `1-penalization
methods, although in this special case we could construct such an approximation
just by eye-balling Figure 1 and noting that most of the function is described by
a linear function, with a few abrupt changes that can be captured by linear spline
terms that induce large changes in slope near 17 and 19 years of schooling. Note
that an exhaustive search for a low-dimensional approximation requires looking at
a very large set of models. We avoided this exhaustive search by using `1-penalized
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least squares (LASSO), which penalizes the size of the model through the sum of
absolute values of regression coefficients. Table 1 quantifies the performance of the
different sparse approximations. (Of course, a simple strategy of eye-balling also
works in this simple illustrative setting, but clearly does not apply to more gen-
eral examples with several conditioning variables zi, for example, when we want to
condition on education, experience, and age.) ut

Sparse Approximation s L2 error L∞ error
Conventional 4 0.1212 0.2969
Conventional 5 0.1210 0.2896

LASSO 4 0.0865 0.1443
LASSO 5 0.0752 0.1154

Post-LASSO 4 0.0586 0.1334
Post-LASSO 5 0.0397 0.0788

Table 1 Errors of Conventional and the LASSO-based Sparse Approximations of the Earning
Function. The LASSO estimator minimizes the least squares criterion plus the `1-norm of the
coefficients scaled by a penalty parameter λ . As shown later, it turns out to have only a few non-
zero components. The Post-LASSO estimator minimizes the least squares criterion over the non-
zero components selected by the LASSO estimator.

The next two applications are natural examples with large sets of regressors
among which we need to select some smaller sets to be used in further estimation
and inference. These examples illustrate the potential wide applicability of HDS
modeling in econometrics, since many classical and new data sets have naturally
multi-dimensional regressors. For example, the American Housing Survey records
prices and multi-dimensional features of houses sold, and scanner data-sets record
prices and multi-dimensional information on products sold at a store or on the inter-
net.

Example 2: Instrument Selection in Angrist and Krueger Data. The second
example we consider is an instrumental variables model, as in Angrist and Krueger
[3]

yi1 = θ0 +θ1yi2 +w′iγ + vi, E[vi|wi,xi] = 0,
yi2 = x′iβ +w′iδ + εi, E[εi|wi,xi] = 0,

where, for person i, yi1 denotes wage, yi2 denotes education, wi denotes a vector
of control variables, and xi denotes a vector of instrumental variables that affect
education but do not directly affect the wage. The instruments xi come from the
quarter-of-birth dummies, and from a very large list, total of 180, formed by inter-
acting quarter-of-birth dummies with control variables wi. The interest focuses on
measuring the coefficient θ1, which summarizes the causal impact of education on
earnings, via instrumental variable estimators.

There are two basic options used in the literature: one uses just the quarter-of-
birth dummies, that is, the leading 3 instruments, and another uses all 183 instru-
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Fig. 1 The figures illustrates the Post-LASSO sparse approximation and the traditional (low degree
polynomial) approximation of the wage function. The top figure uses s = 4 and the bottom figure
uses s = 5.

ments. It is well known that using just 3 instruments results in estimates of the
schooling coefficient θ1 that have a large variance and small bias, while using 183
instruments results in estimates that have a much smaller variance but (potentially)
large bias, see, e.g., [14]. It turns out that, under some conditions, by using `1-based
estimation of the first stage, we can construct estimators that also have a nearly ef-
ficient variance and at the same time small bias. Indeed, as shown in Table 2, using
the LASSO estimator induced by different penalty levels defined in Section 2, it is
possible to find just 37 instruments that contain nearly all information in the first
stage equation. Limiting the number of the instruments from 183 to just 37 reduces
the bias of the final instrumental variable estimator. For a further analysis of IV
estimates based on LASSO-selected instruments, we refer the reader to [6].
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Table 2 Instrumental Variable Estimates of Return to Schooling in Angrist and Krueger Data

Instruments Return to Schooling Robust Std Error
3 0.1077 0.0201

180 0.0928 0.0144
LASSO-selected

5 0.1062 0.0179
7 0.1034 0.0175

17 0.0946 0.0160
37 0.0963 0.0143

ut
Example 3: Cross-country Growth Regression. One of the central issues in

the empirical growth literature is estimating the effect of an initial (lagged) level of
GDP (Gross Domestic Product) per capita on the growth rates of GDP per capita. In
particular, a key prediction from the classical Solow-Swan-Ramsey growth model
is the hypothesis of convergence, which states that poorer countries should typically
grow faster and therefore should tend to catch up with the richer countries. Such
a hypothesis implies that the effect of the initial level of GDP on the growth rate
should be negative. As pointed out in Barro and Sala-i-Martin [5], this hypothesis
is rejected using a simple bivariate regression of growth rates on the initial level of
GDP. (In this data set, linear regression yields an insignificant positive coefficient
of 0.0013.) In order to reconcile the data and the theory, the literature has focused
on estimating the effect conditional on the pertinent characteristics of countries. Co-
variates that describe such characteristics can include variables measuring education
and science policies, strength of market institutions, trade openness, savings rates
and others [5]. The theory then predicts that for countries with similar other charac-
teristics the effect of the initial level of GDP on the growth rate should be negative
([5]). Thus, we are interested in a specification of the form:

yi = α0 +α1 logGi +
p

∑
j=1

β jXi j + εi, (8)

where yi is the growth rate of GDP over a specified decade in country i, Gi is the
initial level of GDP at the beginning of the specified period, and the Xi j’s form a
long list of country i’s characteristics at the beginning of the specified period. We
are interested in testing the hypothesis of convergence, namely that α1 < 0.

Given that in standard data-sets, such as Barro and Lee data [4], the number
of covariates p we can condition on is large, at least relative to the sample size n,
covariate selection becomes a crucial issue in this analysis ([16], [22]). In particular,
previous findings came under severe criticism for relying on ad hoc procedures for
covariate selection. In fact, in some cases, all of the previous findings have been
questioned ([16]). Since the number of covariates is high, there is no simple way to
resolve the model selection problem using only classical tools. Indeed the number of
possible lower-dimensional models is very large, although [16] and [22] attempt to
search over several millions of these models. We suggest `1-penalization and post-
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`1-penalization methods to address this important issue. In Section 8, using these
methods we estimate the growth model (8) and indeed find rather strong support for
the hypothesis of convergence, thus confirming the basic implication of the Solow-
Swan model. ut

Notation. In what follows, all parameter values are indexed by the sample size n,
but we omit the index whenever this does not cause confusion. In making asymptotic
statements, we assume that n→∞ and p = pn →∞, and we also allow for s = sn →
∞. We use the notation (a)+ = max{a,0}, a∨b = max{a,b} and a∧b = min{a,b}.
The `2-norm is denoted by ‖ · ‖ and the “`0-norm” ‖ · ‖0 denotes the number of
non-zero components of a vector. Given a vector δ ∈ Rp, and a set of indices T ⊂
{1, . . . , p}, we denote by δT the vector in which δT j = δ j if j ∈ T , δT j = 0 if j /∈ T .
We also use standard notation in the empirical process literature,

En[ f ] = En[ f (wi)] =
n

∑
i=1

f (wi)/n,

and we use the notation a . b to denote a 6 cb for some constant c > 0 that does not
depend on n; and a .P b to denote a = OP(b). Moreover, for two random variables
X ,Y we say that X =d Y if they have the same probability distribution. We also
define the prediction norm associated with the empirical Gram matrix En[xix′i] as

‖δ‖2,n =
√
En[(x′iδ )2].

2 The Setting and Estimators

2.1 The Model

Throughout the rest of the chapter we consider the nonparametric model introduced
in the previous section:

yi = f (zi)+ εi, εi ∼ N(0,σ2), i = 1, . . . ,n, (9)

where yi is the outcome, zi is a vector of fixed regressors, and εi’s are i.i.d. distur-
bances. Define xi = P(zi), where P(zi) is a p-vector of transformations of zi, includ-
ing a constant, and fi = f (zi). For a conformable sparse vector β0 to be defined
below, we can rewrite (9) in an approximately parametric form:

yi = x′iβ0 +ui, ui = ri + εi, i = 1, . . . ,n, (10)

where ri := fi − x′iβ0, i = 1, . . . ,n, are approximation errors. We note that in the
parametric case, we may naturally choose x′iβ0 = fi so that ri = 0 for all i = 1, . . . ,n.
In the nonparametric case, we shall choose x′iβ0 as a sparse parametric model that
yields a good approximation to the true regression function fi in equation (9).
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Given (10), our target in estimation will become the parametric function x′iβ0.
Here we emphasize that the ultimate target in estimation is, of course, fi, while
x′iβ0 is a convenient intermediate target, introduced so that we can approach the
estimation problem as if it were parametric. Indeed, the two targets are equal up
to approximation errors ri’s that will be set smaller than estimation errors. Thus,
the problem of estimating the parametric target x′iβ0 is equivalent to the problem of
estimating the non-parametric target fi modulo approximation errors.

With that in mind, we choose our target or “true” β0, with the corresponding
cardinality of its support

s = ‖β0‖0,

as any solution to the following ideal risk minimization or oracle problem:

min
β∈Rp

En[( fi− x′iβ )2]+σ2 ‖β‖0

n
. (11)

We call this problem the oracle problem for the reasons explained below, and we
call

T = support(β0)

the oracle or the “true” model. Note that we necessarily have that s 6 n.
The oracle problem (11) balances the approximation error En[( fi− x′iβ )2] over

the design points with the variance term σ2‖β‖0/n, where the latter is determined
by the number of non-zero coefficients in β . Letting

c2
s := En[r2

i ] = En[( fi− x′iβ0)2]

denote the average square error from approximating values fi by x′iβ0, the quantity
c2

s + σ2s/n is the optimal value of (11). Typically, the optimality in (11) would
balance the approximation error with the variance term so that for some absolute
constant K > 0

cs 6 Kσ
√

s/n, (12)

so that
√

c2
s +σ2s/n . σ

√
s/n. Thus, the quantity σ

√
s/n becomes the ideal goal

for the rate of convergence. If we knew the oracle model T , we would achieve this
rate by using the oracle estimator, the least squares estimator based on this model,
but we in general do not know T , since we do not observe the fi’s to attempt to
solve the oracle problem (11). Since T is unknown, we will not be able to achieve
the exact oracle rates of convergence, but we can hope to come close to this rate.

We consider the case of fixed design, namely we treat the covariate values
x1, . . . ,xn as fixed. This includes random sampling as a special case; indeed, in this
case x1, . . . ,xn represent a realization of this sample on which we condition through-
out. Without loss of generality, we normalize the covariates so that

σ̂2
j = En[x2

i j] = 1 for j = 1, . . . , p. (13)

We summarize the setup as the following condition.
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Condition ASM. We have data {(yi,zi), i = 1, . . . ,n} that for each n obey the re-
gression model (9), which admits the approximately sparse form (10) induced by
(11) with the approximation error satisfying (12). The regressors xi = P(zi) are nor-
malized as in (13).

Remark 1 (On the Oracle Problem). Let us now briefly explain what is behind prob-
lem (11). Under some mild assumptions, this problem directly arises as the (infea-
sible) oracle risk minimization problem. Indeed, consider an OLS estimator β̂ [T̃ ],
which is obtained by using a model T̃ , i.e. by regressing yi on regressors xi[T̃ ], where
xi[T̃ ] = {xi j, j ∈ T̃}. This estimator takes value β̂ [T̃ ] = En[xi[T̃ ]xi[T̃ ]′]−En[xi[T̃ ]yi].
The expected risk of this estimator EnE[ fi− xi[T̃ ]′β̂ [T̃ ]]2 is equal to

min
β∈R|T̃ |

En[( fi− xi[T̃ ]′β )2]+σ2 k
n
,

where k = rank(En[xi[T̃ ]xi[T̃ ]′]). The oracle knows the risk of each of the models T̃
and can minimize this risk

min
T̃

min
β∈R|T̃ |

En[( fi− xi[T̃ ]′β )2]+σ2 k
n
,

by choosing the best model or the oracle model T . This problem is in fact equivalent
to (11), provided that rank(En[xi[T ]xi[T ]′]) = ‖β0‖0, i.e. full rank. Thus, in this case
the value β0 solving (11) is the expected value of the oracle least squares estimator
β̂T = En[xi[T ]xi[T ]′]−1En[xi[T ]yi], i.e. β0 = En[xi[T ]xi[T ]′]−1En[xi[T ] fi]. This value
is our target or “true” parameter value and the oracle model T is the target or “true”
model. Note that when cs = 0 we have that fi = x′iβ0, which gives us the special
parametric case.

2.2 LASSO and Post-LASSO Estimators

Having introduced the model (10) with the target parameter defined via (11), our
task becomes to estimate β0. We will focus on deriving rate of convergence results
in the prediction norm, which measures the accuracy of predicting x′iβ0 over the
design points x1, . . . ,xn,

‖δ‖2,n =
√
En[x′iδ ]2.

In what follows δ will denote deviations of the estimators from the true parameter
value. Thus, e.g., for δ = β̂ − β0, the quantity ‖δ‖2

2,n denotes the average of the
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square errors x′iβ̂ − x′iβ0 resulting from using the estimate x′iβ̂ instead of x′iβ0. Note
that once we bound β̂ −β0 in the prediction norm, we can also bound the empirical
risk of predicting values fi by x′iβ̂ via the triangle inequality:

√
En[(x′iβ̂ − fi)2] 6 ‖β̂ −β0‖2,n + cs. (14)

In order to discuss estimation consider first the classical ideal AIC/BIC type es-
timator ([1, 23]) that solves the empirical (feasible) analog of the oracle problem:

min
β∈Rp

Q̂(β )+
λ
n
‖β‖0,

where Q̂(β ) = En[(yi − x′iβ )2] and ‖β‖0 = ∑p
j=1 1{|β j| > 0} is the `0-norm and

λ is the penalty level. This estimator has very attractive theoretical properties, but
unfortunately it is computationally prohibitive, since the solution to the problem
may require solving ∑k6n

(p
k

)
least squares problems (generically, the complexity of

this problem is NP-hard [19, 12]).
One way to overcome the computational difficulty is to consider a convex re-

laxation of the preceding problem, namely to employ the closest convex penalty –
the `1 penalty – in place of the `0 penalty. This construction leads to the so called
LASSO estimator:1

β̂ ∈ arg min
β∈Rp

Q̂(β )+
λ
n
‖β‖1, (15)

where as before Q̂(β ) = En[(yi − x′iβ )2] and ‖β‖1 = ∑p
j=1 |β j|. The LASSO esti-

mator minimizes a convex function. Therefore, from a computational complexity
perspective, (15) is a computationally efficient (i.e. solvable in polynomial time)
alternative to AIC/BIC estimator.

In order to describe the choice of λ , we highlight that the following key quantity
determining this choice:

S = 2En[xiεi],

which summarizes the noise in the problem. We would like to choose the smaller
penalty level so that

λ > cn‖S‖∞ with probability at least 1−α , (16)

where 1−α needs to be close to one, and c is a constant such that c > 1. Following
[7] and [8], respectively, we consider two choices of λ that achieve the above:

X-independent penalty: λ := 2cσ
√

nΦ−1(1−α/2p), (17)
X-dependent penalty: λ := 2cσΛ(1−α|X), (18)

where α ∈ (0,1) and c > 1 is constant, and

1 The abbreviation LASSO stands for Least Absolute Shrinkage and Selection Operator, c.f. [24].



HDSM in Econometrics 11

Λ(1−α|X) := (1−α)−quantile of n‖S/(2σ)‖∞,

conditional on X = (x1, . . . ,xn)′. Note that

‖S/(2σ)‖∞ =d max
16 j6p

|En[xi jgi]|, where gi’s are i.i.d. N(0,1),

conditional on X , so we can compute Λ(1−α|X) simply by simulating the lat-
ter quantity, given the fixed design matrix X . Regarding the choice of α and c,
asymptotically we require α → 0 as n → ∞ and c > 1. Non-asymptotically, in our
finite-sample experiments, α = .1 and c = 1.1 work quite well. The noise level σ
is unknown in practice, but we can estimate it consistently using the approach of
Section 6. We recommend the X-dependent rule over the X-independent rule, since
the former by construction adapts to the design matrix X and is less conservative
than the latter in view of the following relationship that follows from Lemma 8:

Λ(1−α|X) 6
√

nΦ−1(1−α/2p) 6
√

2n log(2p/α). (19)

Regularization by the `1-norm employed in (15) naturally helps the LASSO esti-
mator to avoid overfitting the data, but it also shrinks the fitted coefficients towards
zero, causing a potentially significant bias. In order to remove some of this bias, let
us consider the Post-LASSO estimator that applies ordinary least squares regression
to the model T̂ selected by LASSO. Formally, set

T̂ = support(β̂ ) = { j ∈ {1, . . . , p} : |β̂ j|> 0},

and define the Post-LASSO estimator β̃ as

β̃ ∈ arg min
β∈Rp

Q̂(β ) : β j = 0 for each j ∈ T̂ c, (20)

where T̂ c = {1, ..., p} \ T̂ . In words, the estimator is ordinary least squares applied
to the data after removing the regressors that were not selected by LASSO. If the
model selection works perfectly – that is, T̂ = T – then the Post-LASSO estimator
is simply the oracle estimator whose properties are well known. However, perfect
model selection might be unlikely for many designs of interest, so we are especially
interested in the properties of Post-LASSO in such cases, namely when T̂ 6= T ,
especially when T * T̂ .

2.3 Intuition and Geometry of LASSO and Post-LASSO

In this section we discuss the intuition behind LASSO and Post-LASSO estimators
defined above. We shall rely on a dual interpretation of the LASSO optimization
problem to provide some geometrical intuition for the performance of LASSO. In-
deed, it can be seen that the LASSO estimator also solves the following optimization
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program:
min
β∈Rp

‖β‖1 : Q̂(β ) 6 γ (21)

for some value of γ > 0 (that depends on the penalty level λ ). Thus, the estimator
minimizes the `1-norm of coefficients subject to maintaining a certain goodness-
of-fit; or, geometrically, the LASSO estimator searches for a minimal `1-ball – the
diamond– subject to the diamond having a non-empty intersection with a fixed lower
contour set of the least squares criterion function – the ellipse.

In Figure 2 we show an illustration for the two-dimensional case with the true
parameter value (β01,β02) equal (1,0), so that T = support(β0) = {1} and s = 1. In
the figure we plot the diamonds and ellipses. In the top figure, the ellipse represents
a lower contour set of the population criterion function Q(β ) = E[(yi − x′iβ )2] in
the zero noise case or the infinite sample case. In the bottom figures the ellipse
represents a contour set of the sample criterion function Q̂(β ) = En[(yi − x′iβ )2]
in the non-zero noise or the finite sample case. The set of optimal solutions β̂ for
LASSO is then given by the intersection of the minimal diamonds with the ellipses.
Finally, recall that Post-LASSO is computed as the ordinary least square solution
using covariates selected by LASSO. Thus, Post-LASSO estimate β̃ is given by the
center of the ellipse intersected with the linear subspace selected by LASSO.

In the zero-noise case or in population (top figure), LASSO easily recovers the
correct sparsity pattern of β0. Note that due to the regularization, in spite of the
absence of noise, the LASSO estimator has a large bias towards zero. However, in
this case Post-LASSO β̃ removes the bias and recovers β0 perfectly.

In the non-zero noise case (middle and bottom figures), the contours of the crite-
rion function and its center move away from the population counterpart. The empir-
ical error in the middle figure moves the center of the ellipse to a non-sparse point.
However, LASSO correctly sets β̂2 = 0 and β̂1 6= 0 recovering the sparsity pattern of
β0. Using the selected support, Post-LASSO β̃ becomes the oracle estimator which
drastically improves upon LASSO. In the case of the bottom figure, we have large
empirical errors that push the center of the lower contour set further away from
the population counterpart. These large empirical errors make the LASSO estima-
tor non-sparse, incorrectly setting β̂2 6= 0. Therefore, Post-LASSO uses T̂ = {1,2}
and does not use the exact support T = {1}. Thus, Post-LASSO is not the oracle
estimator in this case.

All three figures also illustrate the shrinkage bias towards zero in the LASSO
estimator that is introduced by the `1-norm penalty. The Post-LASSO estimator
is motivated as a solution to remove (or at least alleviate) this shrinkage bias. In
cases where LASSO achieves a good sparsity pattern, Post-LASSO can drastically
improve upon LASSO.
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2.4 Primitive conditions

In both the parametric and non-parametric models described above, whenever p > n,
the empirical Gram matrix En[xix′i] does not have full rank and hence it is not well-
behaved. However, we only need good behavior of certain moduli of continuity of
the Gram matrix called restricted sparse eigenvalues. We define the minimal re-
stricted sparse eigenvalue

κ(m)2 := min
‖δT c‖06m,δ 6=0

‖δ‖2
2,n

‖δ‖2 , (22)

and the maximal restricted sparse eigenvalue as

φ(m) := max
‖δT c‖06m,δ 6=0

‖δ‖2
2,n

‖δ‖2 , (23)

where m is the upper bound on the number of non-zero components outside the
support T . To assume that κ(m) > 0 requires that all empirical Gram submatrices
formed by any m components of xi in addition to the components in T are posi-
tive definite. It will be convenient to define the following sparse condition number
associated with the empirical Gram matrix:

µ(m) =

√
φ(m)

κ(m)
. (24)

In order to state simplified asymptotic statements, we shall also invoke the fol-
lowing condition.

Condition RSE. Sparse eigenvalues of the empirical Gram matrix are well behaved,
in the sense that for m = mn = s logn

µ(m) . 1, φ(m) . 1, 1/κ(m) . 1. (25)

This condition holds with high probability for many designs of interest under
mild conditions on s. For example, as shown in Lemma 1, when the covariates are
Gaussians, the conditions in (25) are true with probability converging to one under
the mild assumption that s log p = o(n). Condition RSE is likely to hold for other
regressors with jointly light-tailed distributions, for instance log-concave distribu-
tion. As shown in Lemma 2, the conditions in (25) also hold for general bounded
regressors under the assumption that s(log4 n) log(p∨n) = o(n). Arbitrary bounded
regressors often arise in non-parametric models, where regressors xi are formed
as spline, trigonometric, or polynomial transformations P(zi) of some elementary
bounded regressors zi.

Lemma 1 (Gaussian design). Suppose x̃i, i = 1, . . . ,n, are i.i.d. zero-mean Gaus-
sian random vectors, such that the population design matrix E[x̃ix̃′i] has ones on
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the diagonal, and its s logn-sparse eigenvalues are bounded from above by ϕ < ∞
and bounded from below by κ2 > 0. Define xi as a normalized form of x̃i, namely
xi j = x̃i j/

√
En[x̃2

i j]. Then for any m 6 (s log(n/e))∧ (n/[16log p]), with probability

at least 1−2exp(−n/16),

φ(m) 6 8ϕ, κ(m) > κ/6
√

2, and µ(m) 6 24
√

ϕ/κ .

Lemma 2 (Bounded design). Suppose x̃i, i = 1, . . . ,n, are i.i.d. vectors, such that
the population design matrix E[x̃ix̃′i] has ones on the diagonal, and its s logn-sparse
eigenvalues are bounded from above by ϕ < ∞ and bounded from below by κ2 > 0.
Define xi as a normalized form of x̃i, namely xi j = x̃i j/(En[x̃2

i j])
1/2. Suppose that

x̃i max1≤i≤n ‖x̃i‖∞ ≤ Kn a.s., and K2
n s log2(n) log2(s logn) log(p∨ n) = o(nκ4/ϕ).

Then, for any m≥ 0 such that m+ s≤ s logn, we have that as n→ ∞

φ(m) 6 4ϕ, κ(m) > κ/2, and µ(m) 6 4
√

ϕ/κ,

with probability approaching 1.

For proofs, see [7]; the first lemma builds upon results in [26] and the second
builds upon results in [21].

3 Analysis of LASSO

In this section we discuss the rate of convergence of LASSO in the prediction norm;
our exposition follows mainly [8].

The key quantity in the analysis is the following quantity called “score”:

S = S(β0) = 2En[xiεi].

The score is the effective “noise” in the problem. Indeed, defining δ := β̂ −β0, note
that by the Hölder’s inequality

Q̂(β̂ )− Q̂(β0)−‖δ‖2
2,n = −2En[εix′iδ ]−2En[rix′iδ ]

> −‖S‖∞‖δ‖1−2cs‖δ‖2,n.
(26)

Intuition suggests that we need to majorize the “noise term” ‖S‖∞ by the penalty
level λ/n, so that the bound on ‖δ‖2

2,n will follow from a relation between the
prediction norm ‖·‖2,n and the penalization norm ‖·‖1 on a suitable set. Specifically,
for any c > 1, it will follow that if

λ > cn‖S‖∞

and ‖δ‖2,n > 2cs, the vector δ will also satisfy



HDSM in Econometrics 15

‖δT c‖1 6 c̄‖δT‖1, (27)

where c̄ = (c + 1)/(c−1). That is, in this case the error in the regularization norm
outside the true support does not exceed c̄ times the error in the true support. (In the
case ‖δ‖2,n 6 2cs the inequality (27) may not hold, but the bound ‖δ‖2,n 6 2cs is
already good enough.)

Consequently, the analysis of the rate of convergence of LASSO relies on the
so-called restricted eigenvalue κc̄, introduced in [8], which controls the modulus of
continuity between the prediction norm ‖ ·‖2,n and the penalization norm ‖ ·‖1 over
the set of vectors δ ∈ Rp that satisfy (27):

κc̄ := min
‖δT c‖16c̄‖δT ‖1,δT 6=0

√
s‖δ‖2,n

‖δT‖1
, (RE(c))

where κc̄ can depend on n. The constant κc̄ is a crucial technical quantity in our
analysis and we need to bound it away from zero. In the leading cases that condition
RSE holds this will in fact be the case as the sample size grows, namely

1/κc̄ . 1. (28)

Indeed, we can bound κc̄ from below by

κc̄ > max
m>0

κ(m)
(

1−µ(m)c̄
√

s/m
)

> κ(s logn)
(

1−µ(s logn)c̄
√

1/ logn
)

by Lemma 10 stated and proved in the appendix. Thus, under the condition RSE, as
n grows, κc̄ is bounded away from zero since κ(s logn) is bounded away from zero
and φ(s logn) is bounded from above as in (25). Several other primitive assumptions
can be used to bound κc̄. We refer the reader to [8] for a further detailed discussion
of lower bounds on κc̄.

We next state a non-asymptotic performance bound for the LASSO estimator.

Theorem 1 (Non-Asymptotic Bound for LASSO). Under condition ASM, the
event λ > cn‖S‖∞ implies

‖β̂ −β0‖2,n 6
(

1+
1
c

)
λ
√

s
nκc̄

+2cs, (29)

where cs = 0 in the parametric case, and c̄ = (c +1)/(c−1). Thus, if λ > cn‖S‖∞
with probability at least 1− α , as guaranteed by either X-independent or X-
dependent penalty levels (17) and (17), then the bound (29) occurs with probability
at least 1−α .

The proof of Theorem 1 is given in the appendix. The theorem also leads to the
following useful asymptotic bounds.

Corollary 1 (Asymptotic Bound for LASSO). Suppose that conditions ASM and
RSE hold. If λ is chosen according to either the X-independent or X-dependent rule
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specified in (17) and (18) with α = o(1), log(1/α) . log p, or more generally so
that

λ .P σ
√

n log p and λ > c′n‖S‖∞ wp → 1, (30)

for some c′ > 1, then the following asymptotic bound holds:

‖β̂ −β0‖2,n .P σ
√

s log p
n

+ cs.

The non-asymptotic and asymptotic bounds for the empirical risk immediately
follow from the triangle inequality:

√
En[( fi− x′iβ̂ )2] 6 ‖β̂ −β0‖2,n + cs. (31)

Thus, the rate of convergence of x′iβ̂ to fi coincides with the rate of convergence
of the oracle estimator

√
c2

s +σ2s/n up to a logarithmic factor of p. Nonetheless,
the performance of LASSO can be considered optimal in the sense that under gen-
eral conditions the oracle rate is achievable only up to logarithmic factor of p (see
Donoho and Johnstone [11] and Rigollet and Tsybakov [20]), apart from very ex-
ceptional, stringent cases, in which it is possible to perform perfect or near-perfect
model selection.

4 Model Selection Properties and Sparsity of LASSO

The purpose of this section is, first, to provide bounds (sparsity bounds) on the
dimension of the model selected by LASSO, and, second, to describe some special
cases where the model selected by LASSO perfectly matches the “true” (oracle)
model.

4.1 Sparsity Bounds

Although perfect model selection can be seen as unlikely in many designs, sparsity
of the LASSO estimator has been documented in a variety of designs. Here we
describe the sparsity results obtained in [7]. Let us define

m̂ := |T̂ \T |= ‖β̂T c‖0,

which is the number of unnecessary components or regressors selected by LASSO.

Theorem 2 (Non-Asymptotic Sparsity Bound for LASSO). Suppose condition
ASM holds. The event λ > cn‖S‖∞ implies that
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m̂ 6 s ·
[

min
m∈M

φ(m∧n)
]
·L,

where M = {m ∈ N : m > sφ(m∧n) ·2L} and L = [2c̄/κc̄ +3(c̄+1)ncs/(λ
√

s)]2.

Under Conditions ASM and RSE, for n sufficiently large we have 1/κc̄ . 1,
cs . σ

√
s/n, and φ(s logn) . 1; and under the conditions of Corollary 1, λ ≥ cσ

√
n

with probability approaching one. Therefore, we have that L .P 1 and

s logn > sφ(s logn) ·2L, that is, s logn ∈M

with probability approaching one as n grows. Therefore, under these conditions we
have

min
m∈M

φ(m∧n) .P 1.

Corollary 2 (Asymptotic Sparsity Bound for LASSO). Under the conditions of
Corollary 1, we have that

m̂ .P s. (32)

Thus, using a penalty level that satisfies (30) LASSO’s sparsity is asymptotically
of the same order as the oracle sparsity, namely

ŝ := |T̂ |6 s+ m̂ .P s. (33)

We note here that Theorem 2 is particularly helpful in designs in which minm∈M φ(m)
¿ φ(n). This allows Theorem 2 to sharpen the sparsity bound of the form ŝ .P
sφ(n) considered in [8] and [18]. The bound above is comparable to the bounds in
[26] in terms of order of magnitude, but Theorem 2 requires a smaller penalty level
λ which also does not depend on the unknown sparse eigenvalues as in [26].

4.2 Perfect Model Selection Results

The purpose of this section is to describe very special cases where perfect model
selection is possible. Most results in the literature for model selection have been
developed for the parametric case only ([18],[17]). Below we provide some results
for the nonparametric models, which cover the parametric models as a special case.

Lemma 3 (Cases with Perfect Model Selection by Thresholded LASSO). Sup-
pose condition ASM holds. (1) If the non-zero coefficients of the oracle model are
well separated from zero, that is

min
j∈T

|β0 j|> ζ + t, for some t > ζ := max
j=1,...,p

|β̂ j−β0 j|,

then the oracle model is a subset of the selected model,
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T := support(β0)⊆ T̂ := support(β̂ ).

Moreover the oracle model T can be perfectly selected by applying hard-thresholding
of level t to the LASSO estimator β̂ :

T =
{

j ∈ {1, . . . , p} : |β̂ j|> t
}

.

(2) In particular, if λ > cn‖S‖∞, then for m̂ = |T̂ \T |= ‖β̂T c‖0 we have

ζ 6
(

1+
1
c

)
λ
√

s
nκc̄κ(m̂)

+
2cs

κ(m̂)
.

(3) In particular, if λ > cn‖S‖∞, and there is a constant U > 5c̄ such that the em-
pirical Gram matrix satisfies |En[xi jxik]|6 1/[Us] for all 1 6 j < k 6 p, then

ζ 6 λ
n
· U + c̄
U−5c̄

+min
{

σ√
n
,cs

}
+

6c̄
U−5c̄

cs√
s
+

4c̄
U

n
λ

c2
s

s
.

Thus, we see from parts (1) and (2) that perfect model selection is possible under
strong assumptions on the coefficients’ separation away from zero. We also see from
part (3) that the strong separation of coefficients can be considerably weakened in
exchange for a strong assumption on the maximal pairwise correlation of regressors.
These results generalize to the nonparametric case the results of [17] and [18] for
the parametric case in which cs = 0.

Finally, the following result on perfect model selection also requires strong as-
sumptions on separation of coefficients and the empirical Gram matrix. Recall that
for a scalar v, sign(v) = v/|v| if |v| > 0, and 0 otherwise. If v is a vector, we apply
the definition componentwise. Also, given a vector x ∈ Rp and a set T ⊂ {1, ..., p},
let us denote xi[T ] := {xi j, j ∈ T}.

Lemma 4 (Cases with Perfect Model Selection by LASSO). Suppose condition
ASM holds. We have perfect model selection for LASSO, T̂ = T , if and only if

∥∥∥En [xi[T c]xi[T ]′]En [xi[T ]xi[T ]′]−1
{
En[xi[T ]ui]

− λ
2n sign(β0[T ])

}
−En[xi[T c]ui]

∥∥∥
∞

6 λ
2n ,

min j∈T

∣∣∣∣β0 j +
(
En [xi[T ]xi[T ]′]−1

{
En[xi[T ]ui]− λ

2n sign(β0[T ])
})

j

∣∣∣∣ > 0.

The result follows immediately from the first order optimality conditions, see
[25]. [27] and [9] provides further primitive sufficient conditions for perfect model
selection for the parametric case in which ui = εi. The conditions above might typi-
cally require a slightly larger choice of λ than (17) and larger separation from zero
of the minimal non-zero coefficient min j∈T |β0 j|.
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5 Analysis of Post-LASSO

Next we study the rate of convergence of the Post-LASSO estimator. Recall that for
T̂ = support (β̂ ), the Post-LASSO estimator solves

β̃ ∈ arg min
β∈Rp

Q̂(β ) : β j = 0 for each j ∈ T̂ c.

It is clear that if the model selection works perfectly (as it will under some rather
stringent conditions discussed in Section 4.2), that is, T = T̂ , then this estimator is
simply the oracle least squares estimator whose properties are well known. How-
ever, if the model selection does not work perfectly, that is, T 6= T̂ , the resulting
performance of the estimator faces two different perils: First, in the case where
LASSO selects a model T̂ that does not fully include the true model T , we have
a specification error in the second step. Second, if LASSO includes additional re-
gressors outside T , these regressors were not chosen at random and are likely to be
spuriously correlated with the disturbances, so we have a data-snooping bias in the
second step.

It turns out that despite of the possible poor selection of the model, and the afore-
mentioned perils this causes, the Post-LASSO estimator still performs well theo-
retically, as shown in [7]. Here we provide a proof similar to [6] which is easier
generalize to non-Gaussian cases.

Theorem 3 (Non-Asymptotic Bound for Post-LASSO). Suppose condition ASM
holds. If λ > cn‖S‖∞ holds with probability at least 1−α , then for any γ > 0 there
is a constant Kγ independent of n such that with probability at least 1−α− γ

‖β̃ −β0‖2,n 6 Kγ σ
κ(m̂)

√
s+ m̂ log p

n
+2cs +1{T 6⊆ T̂}

√
λ
√

s
nκc̄

·
(

(1+ c)λ
√

s
cnκc̄

+2cs

)
.

This theorem provides a performance bound for Post-LASSO as a function of
LASSO’s sparsity characterized by m̂, LASSO’s rate of convergence, and LASSO’s
model selection ability. For common designs this bound implies that Post-LASSO
performs at least as well as LASSO, but it can be strictly better in some cases, and
has a smaller shrinkage bias by construction.

Corollary 3 (Asymptotic Bound for Post-LASSO). Suppose conditions of Corol-
lary 1 hold. Then

‖β̃ −β0‖2,n .P σ
√

s log p
n

+ cs. (34)

If further m̂ = o(s) and T ⊆ T̂ with probability approaching one, then

‖β̃ −β0‖2,n .P σ

[√
o(s) log p

n
+

√
s
n

]
+ cs. (35)
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If T̂ = T with probability approaching one, then Post-LASSO achieves the oracle
performance

‖β̃ −β0‖2,n .P σ
√

s/n+ cs. (36)

It is also worth repeating here that finite-sample and asymptotic bounds in other
norms of interest immediately follow by the triangle inequality and by definition of
κ(m̂):

√
En[(x′iβ̃ − fi)2] 6 ‖β̃ −β0‖2,n + cs and ‖β̃ −β0‖6 ‖β̃ −β0‖2,n/κ(m̂). (37)

The corollary above shows that Post-LASSO achieves the same near-oracle rate
as LASSO. Notably, this occurs despite the fact that LASSO may in general fail to
correctly select the oracle model T as a subset, that is T 6⊆ T̂ . The intuition for this
result is that any components of T that LASSO misses cannot be very important.
This corollary also shows that in some special cases Post-LASSO strictly improves
upon LASSO’s rate. Finally, note that Corollary 3 follows by observing that under
the stated conditions,

‖β̃ −β0‖2,n .P σ

[√
m̂ log p

n
+

√
s
n

+1{T 6⊆ T̂}
√

s log p
n

]
+ cs. (38)

6 Estimation of Noise Level

Our specification of penalty levels (18) and (17) require the practitioner to know the
noise level σ of the disturbances or at least estimate it. The purpose of this section
is to propose the following method for estimating σ . First, we use a conservative
estimate σ̂0 =

√
Varn[yi] :=

√
En [(yi− ȳ)2], where ȳ = En[yi], in place of σ2 to

obtain the initial LASSO and Post-LASSO estimates, β̂ and β̃ . The estimate σ̂ 0 is
conservative since σ̂0 = σ0 + oP(1) where σ0 =

√
Var[yi] > σ , since xi contains a

constant by assumption. Second, we define the refined estimate σ̂ as

σ̂ =
√

Q̂(β̂ )

in the case of LASSO and

σ̂ =
√

n
n− ŝ

· Q̂(β̃ )

in the case of Post-LASSO. In the latter case we employ the standard degree-of-
freedom correction with ŝ = ‖β̃‖0 = |T̂ |, and in the former case we need no ad-
ditional corrections, since the LASSO estimate is already sufficiently regularized.
Third, we use the refined estimate σ̂2 to obtain the refined LASSO and Post-LASSO
estimates β̂ and β̃ . We can stop here or further iterate on the last two steps.

Thus, the algorithm for estimating σ using LASSO is as follows:
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Algorithm 1 (Estimation of σ using LASSO iterations) Set σ̂0 =
√

Varn[yi] and
k = 0, and specify a small constant ν > 0, the tolerance level, and a constant I > 1,
the upper bound on the number of iterations. (1) Compute the LASSO estimator β̂
based on λ = 2cσ̂ kΛ(1−α|X). (2) Set

σ̂ k+1 =
√

Q̂(β̂ ).

(3) If |σ̂ k+1− σ̂ k| 6 ν or k + 1 > I, then stop and report σ̂ = σ̂ k+1; otherwise set
k ← k +1 and go to (1).

And the algorithm for estimating σ using Post-LASSO is as follows:

Algorithm 2 (Estimation of σ using Post-LASSO iterations) Set σ̂0 =
√

Varn[yi]
and k = 0, and specify a small constant ν > 0, the tolerance level, and a constant
I > 1, the upper bound on the number of iterations. (1) Compute the Post-LASSO
estimator β̃ based on λ = 2cσ̂ kΛ(1−α|X). (2) Set

σ̂ k+1 =
√

n
n− ŝ

· Q̂(β̃ ),

where ŝ = ‖β̃‖0 = |T̂ |. (3) If |σ̂ k+1 − σ̂ k| 6 ν or k + 1 > I, then stop and report
σ̂ = σ̂ k+1; otherwise, set k ← k +1 and go to (1).

We can also use λ = 2cσ̂ k√nΦ−1(1−α/2p) in place of X-dependent penalty. We
note that using LASSO to estimate σ it follows that the sequence σ̂ k, k > 2, is
monotone, while using Post-LASSO the estimates σ̂ k, k > 1, can only assume a
finite number of different values.

The following theorem shows that these algorithms produce consistent estimates
of the noise level, and that the LASSO and Post-LASSO estimators based on the re-
sulting data-driven penalty continue to obey the asymptotic bounds we have derived
previously.

Theorem 4 (Validity of Results with Estimated σ ). Suppose conditions ASM and
RES hold. Suppose that σ 6 σ̂0 . σ with probability approaching 1 and s log p/n→
0. Then σ̂ produced by either Algorithm 1 or 2 is consistent

σ̂/σ →P 1

so that the penalty levels λ = 2cσ̂ kΛ(1−α|X) and λ = 2cσ̂ k√nΦ−1(1−α/2p)
with α = o(1), and log(1/α) . log p, satisfy the condition (30) of Corollary 1,
namely

λ .P σ
√

n log p and λ > c′n‖S‖∞ wp → 1, (39)

for some 1 < c′ < c. Consequently, the LASSO and Post-LASSO estimators based
on this penalty level obey the conclusions of Corollaries 1, 2, and 3.
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7 Monte Carlo Experiments

In this section we compare the performance of LASSO, Post-LASSO, and the
ideal oracle linear regression estimators. The oracle estimator applies ordinary least
square to the true model. (Such an estimator is not available outside Monte Carlo
experiments.)

We begin by considering the following regression model:

y = x′β0 + ε, β0 = (1,1,1/2,1/3,1/4,1/5,0, . . . ,0)′,

where x = (1,z′)′ consists of an intercept and covariates z∼ N(0,Σ), and the errors
ε are independently and identically distributed ε ∼ N(0,σ2). The dimension p of
the covariates x is 500, the dimension s of the true model is 6, and the sample
size n is 100. We set λ according to the X-dependent rule with 1−α = 90%. The
regressors are correlated with Σi j = ρ |i− j| and ρ = 0.5. We consider two levels of
noise: Design 1 with σ2 = 1 (higher level) and Design 2 with σ2 = 0.1 (lower level).
For each repetition we draw new vectors xi’s and errors εi’s.

We summarize the model selection performance of LASSO in Figures 3 and 4.
In the left panels of the figures, we plot the frequencies of the dimensions of the
selected model; in the right panels we plot the frequencies of selecting the cor-
rect regressors. From the left panels we see that the frequency of selecting a much
larger model than the true model is very small in both designs. In the design with
a larger noise, as the right panel of Figure 3 shows, LASSO frequently fails to se-
lect the entire true model, missing the regressors with small coefficients. However,
it almost always includes the most important three regressors with the largest co-
efficients. Notably, despite this partial failure of the model selection Post-LASSO
still performs well, as we report below. On the other hand, we see from the right
panel of Figure 4 that in the design with a lower noise level LASSO rarely misses
any component of the true support. These results confirm the theoretical results that
when the non-zero coefficients are well-separated from zero, the penalized estima-
tor should select a model that includes the true model as a subset. Moreover, these
results also confirm the theoretical result of Theorem 2, namely, that the dimension
of the selected model should be of the same stochastic order as the dimension of the
true model. In summary, the model selection performance of the penalized estimator
agrees very well with the theoretical results.

We summarize the results on the performance of estimators in Table 3, which
records for each estimator β̌ the mean `0-norm E[‖β̌‖0], the norm of the bias
‖Eβ̌ −β0‖ and also the prediction error E[En[|x′i(β̌ −β0)|2]1/2] for recovering the
regression function. As expected, LASSO has a substantial bias. We see that Post-
LASSO drastically improves upon the LASSO, particularly in terms of reducing the
bias, which also results in a much lower overall prediction error. Notably, despite
that under the higher noise level LASSO frequently fails to recover the true model,
the Post-LASSO estimator still performs well. This is because the penalized esti-
mator always manages to select the most important regressors. We also see that the
prediction error of the Post-LASSO is within a factor

√
log p of the prediction error
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of the oracle estimator, as we would expect from our theoretical results. Under the
lower noise level, Post-LASSO performs almost identically to the ideal oracle esti-
mator. We would expect this since in this case LASSO selects the model especially
well making Post-LASSO nearly the oracle.

Monte Carlo Results

Design 1 (σ2 = 1)
Mean `0-norm Bias Prediction Error

LASSO 5.41 0.4136 0.6572
Post-LASSO 5.41 0.0998 0.3298
Oracle 6.00 0.0122 0.2326

Design 2 (σ2 = 0.1)
Mean `0-norm Bias Prediction Error

LASSO 6.3640 0.1395 0.2183
Post-LASSO 6.3640 0.0068 0.0893
Oracle 6.00 0.0039 0.0736

Table 3 The table displays the average `0-norm of the estimators as well as mean bias and predic-
tion error. We obtained the results using 1000 Monte Carlo repetitions for each design.

The results above used the true value of σ in the choice of λ . Next we illustrate
how σ can be estimated in practice. We follow the iterative procedure described in
the previous section. In our experiments the tolerance was 10−8 times the current
estimate for σ , which is typically achieved in less than 15 iterations.

We assess the performance of the iterative procedure under the design with the
larger noise, σ2 = 1 (similar results hold for σ2 = 0.1). The histograms in Fig-
ure 5 show that the model selection properties are very similar to the model se-
lection when σ is known. Figure 6 displays the distribution of the estimator σ̂ of
σ based on (iterative) Post-LASSO, (iterative) LASSO, and the initial estimator
σ̂0 =

√
Varn[yi]. As we expected, estimator σ̂ based on LASSO produces estimates

that are somewhat higher than the true value. In contrast, the estimator σ̂ based on
Post-LASSO seems to perform very well in our experiments, giving estimates σ̂
that bunch closely near the true value σ .

8 Application to Cross-Country Growth Regression

In this section we apply LASSO and Post-LASSO to an international economic
growth example. We use the Barro and Lee [4] data consisting of a panel of 138
countries for the period of 1960 to 1985. We consider the national growth rates in
GDP per capita as a dependent variable y for the periods 1965-75 and 1975-85.2 In

2 The growth rate in GDP over a period from t1 to t2 is commonly defined as log(GDPt2/GDPt1 ).
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our analysis, we will consider a model with p = 62 covariates, which allows for a
total of n = 90 complete observations. Our goal here is to select a subset of these
covariates and briefly compare the resulting models to the standard models used in
the empirical growth literature (Barro and Sala-i-Martin [5]).

Let us now turn to our empirical results. We performed covariate selection using
LASSO, where we used our data-driven choice of penalty level λ in two ways.
First we used an upper bound on σ being σ̂0 and decreased the penalty to estimate
different models with λ , λ/2, λ/3, λ/4, and λ/5. Second, we applied the iterative
procedure described in the previous section to define λ it (which is computed based
on σ̂ it obtained using the iterative Post-LASSO procedure).

The initial choice of the first approach led us to select no covariates, which is
consistent with over-regularization since an upper bound for σ was used. We then
proceeded to slowly decrease the penalty level in order to allow for some covariates
to be selected. We present the model selection results in Table 5. With the first
relaxation of the choice of λ , we select the black market exchange rate premium
(characterizing trade openness) and a measure of political instability. With a second
relaxation of the choice of λ we select an additional set of variables reported in the
table. The iterative approach led to a model with only the black market exchange
premium. We refer the reader to [4] and [5] for a complete definition and discussion
of each of these variables.

We then proceeded to apply ordinary linear regression to the selected models and
we also report the standard confidence intervals for these estimates. Table 8 shows
these results. We find that in all models with additional selected covariates, the lin-
ear regression coefficients on the initial level of GDP is always negative and the
standard confidence intervals do not include zero. We believe that these empirical
findings firmly support the hypothesis of (conditional) convergence derived from
the classical Solow-Swan-Ramsey growth model.3 Finally, our findings also agree
with and thus support the previous findings reported in Barro and Sala-i-Martin [5],
which relied on ad-hoc reasoning for covariate selection.
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3 The inferential method used here is actually valid under certain conditions, despite the fact that
the model has been selected; this is demonstrated in a work in progress.
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Confidence Intervals after Model Selection
for the International Growth Regressions

Penalization Real GDP per capita (log)
Parameter

λ = 2.7870 Coefficient 90% Confidence Interval
λ it = 2.3662 −0.0112 [−0.0219,−0.0007]

λ/2 −0.0120 [−0.0225,−0.0015]
λ/3 −0.0153 [−0.0261,−0.0045]
λ/4 −0.0221 [−0.0346,−0.0097]
λ/5 −0.0370 [−0.0556,−0.0184]

Table 4 The table above displays the coefficient and a 90% confidence interval associated with
each model selected by the corresponding penalty level. The selected models are displayed in
Table 5.

Model Selection Results for the International Growth Regressions
Penalization
Parameter Real GDP per capita (log) is included in all models

λ = 2.7870 Additional Selected Variables
λ -

λ it Black Market Premium (log)
λ/2 Black Market Premium (log)

Political Instability
λ/3 Black Market Premium (log)

Political Instability
Ratio of nominal government expenditure on defense to nominal GDP

Ratio of import to GDP
λ/4 Black Market Premium (log)

Political Instability
Ratio of nominal government expenditure on defense to nominal GDP

λ/5 Black Market Premium (log)
Political Instability

Ratio of nominal government expenditure on defense to nominal GDP
Ratio of import to GDP

Exchange rate
% of “secondary school complete” in male population

Terms of trade shock
Measure of tariff restriction

Infant mortality rate
Ratio of real government “consumption” net of defense and education

Female gross enrollment ratio for higher education

Table 5 The models selected at various levels of penalty.
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Appendix

9 Proofs

Proof (Theorem 1). Proceeding similarly to [8], by optimality of β̂ we have that

Q̂(β̂ )− Q̂(β0) 6 λ
n
‖β0‖1− λ

n
‖β̂‖1. (40)

To prove the result we make the use of the following relations: for δ = β̂ −β0, if
λ > cn‖S‖∞

Q̂(β̂ )− Q̂(β0)−‖δ‖2
2,n = −2En[εix′iδ ]−2En[rix′iδ ] (41)

> −‖S‖∞‖δ‖1−2cs‖δ‖2,n

> − λ
cn

(‖δT‖1 +‖δT c‖1)−2cs‖δ‖2,n, (42)

‖β0‖1−‖β̂‖1 = ‖β0T‖1−‖β̂T‖1−‖β̂T c‖1 6 ‖δT‖1−‖δT c‖1. (43)

Thus, combining (40) with (41)–(43) implies that

− λ
cn

(‖δT‖1 +‖δT c‖1)+‖δ‖2
2,n−2cs‖δ‖2,n 6 λ

n
(‖δT‖1−‖δT c‖1). (44)

If ‖δ‖2
2,n− 2cs‖δ‖2,n < 0, then we have established the bound in the statement of

the theorem. On the other hand, if ‖δ‖2
2,n−2cs‖δ‖2,n > 0 we get

‖δT c‖1 6 c+1
c−1

· ‖δT‖1 = c̄‖δT‖1, (45)

and therefore δ satisfies the condition to invoke RE(c). From (44) and using RE(c),
‖δT‖1 6√

s‖δ‖2,n/κc̄, we get

‖δ‖2
2,n−2cs‖δ‖2,n 6

(
1+

1
c

)
λ
n
‖δT‖1 6

(
1+

1
c

)
λ
√

s
n

‖δ‖2,n

κc̄

which gives the result on the prediction norm.

Lemma 5 (Empirical pre-sparsity for LASSO). In either the parametric model or
the nonparametric model, let m̂ = |T̂ \T | and λ > c ·n‖S‖∞. We have

√
m̂ 6

√
s
√

φ(m̂) 2c̄/κc̄ +3(c̄+1)
√

φ(m̂) ncs/λ ,

where cs = 0 in the parametric model.

Proof. We have from the optimality conditions that
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2En[xi j(yi− x′iβ̂ )] = sign(β̂ j)λ/n for each j ∈ T̂ \T.

Therefore we have for R = (r1, . . . ,rn)′, X = [x1, ...,xn]′, and Y = (y1, ...,yn)′

√
m̂λ = 2‖(X ′(Y −X β̂ ))T̂\T‖

6 2‖(X ′(Y −R−Xβ0))T̂\T‖+2‖(X ′R)T̂\T‖+2‖(X ′X(β0− β̂ ))T̂\T‖
6
√

m̂ ·n‖S‖∞ +2n
√

φ(m̂)cs +2n
√

φ(m̂)‖β̂ −β0‖2,n,

where we used that

‖(X ′X(β0− β̂ ))T̂\T‖ 6 sup‖vT c‖06m̂,‖v‖61 |v′X ′X(β0− β̂ )|
6 sup‖vT c‖06m̂,‖v‖61 ‖v′X ′‖‖X(β0− β̂ )‖
= sup‖vT c‖06m̂,‖v‖61

√
|v′X ′Xv|‖X(β0− β̂ )‖

= n
√

φ(m̂)‖β0− β̂‖2,n,

and similarly ‖(X ′R)T̂\T‖6 n
√

φ(m̂)cs.

Since λ/c > n‖S‖∞, and by Theorem 1, ‖β0 − β̂‖2,n 6
(
1+ 1

c

) λ
√

s
nκc̄

+ 2cs, we
have

(1−1/c)
√

m̂ 6 2
√

φ(m̂)(1+1/c)
√

s/κc̄ +6
√

φ(m̂) ncs/λ .

The result follows by noting that (1−1/c) = 2/(c̄+1) by definition of c̄.

Proof (Proof of Theorem 2). Since λ > c ·n‖S‖∞ by Lemma 5 we have
√

m̂ 6
√

φ(m̂) ·2c̄
√

s/κc̄ +3(c̄+1)
√

φ(m̂) ·ncs/λ ,

which, by letting L =
(

2c̄
κc̄

+3(c̄+1) ncs
λ
√

s

)2
, can be rewritten as

m̂ 6 s ·φ(m̂)L. (46)

Note that m̂ 6 n by optimality conditions. Consider any M ∈M , and suppose m̂ >
M. Therefore by Lemma 9 on sublinearity of sparse eigenvalues

m̂ 6 s ·
⌈

m̂
M

⌉
φ(M)L.

Thus, since dke< 2k for any k > 1 we have

M < s ·2φ(M)L

which violates the condition of M ∈M and s. Therefore, we must have m̂ 6 M.
In turn, applying (46) once more with m̂ 6 (M∧n) we obtain

m̂ 6 s ·φ(M∧n)L.

The result follows by minimizing the bound over M ∈M .
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Proof (Lemma 3, part (1)). The result follows immediately from the assumptions.

Proof (Lemma 3, part (2)). Let m̂ = |T̂ \T |= ‖β̂T c‖0. Then, note that ‖δ‖∞ 6 ‖δ‖6
‖δ‖2,n/κ(m̂). The result follows from Theorem 1.

Proof (Lemma 3, part (3)). Let δ := β̂ −β0. Note that by the first order optimality
conditions of β̂ and the assumption on λ

‖En[xix′iδ ]‖∞ 6 ‖En[xi(yi− x′iβ̂ )]‖∞ +‖S/2‖∞ +‖En[xiri]‖∞

6 λ
2n

+
λ

2cn
+min

{
σ√

n
,cs

}

since ‖En[xiri]‖∞ 6 min
{

σ√
n ,cs

}
by Lemma 6 below.

Next let e j denote the jth-canonical direction. Thus, for every j = 1, . . . , p we
have

|En[e′jxix′iδ ]−δ j|= |En[e′j(xix′i− I)δ ]| 6 max
16 j,k6p

|(En[xix′i− I]) jk| ‖δ‖1

6 ‖δ‖1/[Us].

Then, combining the two bounds above and using the triangle inequality we have

‖δ‖∞ 6 ‖En[xix′iδ ]‖∞ +‖En[xix′iδ ]−δ‖∞ 6
(

1+
1
c

)
λ
2n

+min
{

σ√
n
,cs

}
+
‖δ‖1

Us
.

The result follows by Lemma 7 to bound ‖δ‖1 and the arguments in [8] and [17] to
show that the bound on the correlations imply that for any C > 0

κC >
√

1− s(1+2C)‖En[xix′i− I]‖∞

so that κc̄ >
√

1− [(1+2c̄)/U ] and κ2c̄ >
√

1− [(1+4c̄)/U ] under this particular
design.

Lemma 6. Under condition ASM, we have that

‖En[xiri]‖∞ 6 min
{

σ√
n
,cs

}
.

Proof. First note that for every j = 1, . . . , p, we have |En[xi jri]|6
√
En[x2

i j]En[r2
i ] =

cs.
Next, by definition of β0 in (11), for j ∈ T we have

En[xi j( fi− x′iβ0)] = En[xi jri] = 0

since β0 is a minimizer over the support of β0. For j ∈ T c we have that for any t ∈R

En[( fi− x′iβ0)2]+σ2 s
n

6 En[( fi− x′iβ0− txi j)2]+σ2 s+1
n

.



HDSM in Econometrics 29

Therefore, for any t ∈ R we have

−σ2/n 6En[( fi−x′iβ0−txi j)2]−En[( fi−x′iβ0)2] =−2tEn[xi j( fi−x′iβ0)]+t2En[x2
i j].

Taking the minimum over t in the right hand side at t∗ =En[xi j( fi−x′iβ0)] we obtain

−σ2/n 6−(En[xi j( fi− x′iβ0)])2

or equivalently, |En[xi j( fi− x′iβ0)]|6 σ/
√

n.

Lemma 7. If λ > cn‖S‖∞, then for c̄ = (c+1)/(c−1) we have

‖β̂ −β0‖1 6 (1+2c̄)
√

s
κ2c̄

[(
1+

1
c

)
λ
√

s
nκc̄

+2cs

]
+

(
1+

1
2c̄

)
2c

c−1
n
λ

c2
s ,

where cs = 0 in the parametric case.

Proof. First, assume ‖δT c‖1 6 2c̄‖δT‖1. In this case, by definition of the restricted
eigenvalue, we have

‖δ‖1 6 (1+2c̄)‖δT‖1 6 (1+2c̄)
√

s‖δ‖2,n/κ2c̄

and the result follows by applying the first bound to ‖δ‖2,n since c̄ > 1.
On the other hand, consider the case that ‖δT c‖1 > 2c̄‖δT‖1 which would already

imply ‖δ‖2,n 6 2cs. Moreover, the relation (44) implies that

‖δT c‖1 6 c̄‖δT‖1 + c
c−1

n
λ ‖δ‖2,n(2cs−‖δ‖2,n)

6 c̄‖δT‖1 + c
c−1

n
λ c2

s
6 1

2‖δT c‖1 + c
c−1

n
λ c2

s .

Thus,

‖δ‖1 6
(

1+
1
2c̄

)
‖δT c‖1 6

(
1+

1
2c̄

)
2c

c−1
n
λ

c2
s .

The result follows by adding the bounds on each case and invoking Theorem 1
to bound ‖δ‖2,n.

Proof (Theorem 3). Let δ̃ := β̃ −β0. By definition of the Post-LASSO estimator, it
follows that Q̂(β̃ ) 6 Q̂(β̂ ) and Q̂(β̃ ) 6 Q̂(β0T̂ ). Thus,

Q̂(β̃ )− Q̂(β0) 6
(

Q̂(β̂ )− Q̂(β0)
)
∧

(
Q̂(β0T̂ )− Q̂(β0)

)
=: Bn∧Cn.

The least squares criterion function satisfies
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|Q̂(β̃ )− Q̂(β0)−‖δ̃‖2
2,n| 6 |S′δ̃ |+2cs‖δ̃‖2,n

6 |S′T δ̃ |+ |S′T c δ̃ |+2cs‖δ̃‖2,n

6 ‖ST‖‖δ̃‖+‖ST c‖∞‖δ̃T c‖1 +2cs‖δ̃‖2,n

6 ‖ST‖‖δ̃‖+‖ST c‖∞
√

m̂‖δ̃‖+2cs‖δ̃‖2,n

6 ‖ST‖‖δ̃‖2,n

κ(m̂)
+‖ST c‖∞

√
m̂
‖δ̃‖2,n

κ(m̂)
+2cs‖δ̃‖2,n.

Next, note that for any j ∈ {1, . . . , p}we have E[S2
j ] = 4σ2/n, so that E[‖ST‖2] 6

4σ2s/n. Thus, by Chebyshev inequality, for any γ̃ > 0, there is a constant Aγ̃ such
that ‖ST‖ 6 Aγ̃ σ

√
s/n with probability at least 1− γ̃ . Moreover, using Lemma 8,

‖ST c‖∞ 6 A′̃γ 2σ
√

2log p /n with probability at least 1− γ̃ for some constant A′̃γ .
Define Aγ,n := Kγ σ

√
(s+ m̂ log p)/n so that Aγ,n > ‖ST‖+

√
m̂‖ST c‖∞ with proba-

bility at least 1− γ for some constant Kγ < ∞ independent of n and p.
Combining these relations, with probability at least 1− γ we have

‖δ̃‖2
2,n−Aγ,n‖δ̃‖2,n/κ(m̂)−2cs‖δ̃‖2,n 6 Bn∧Cn,

solving which we obtain:

‖δ̃‖2,n 6 Aγ,n/κ(m̂)+2cs +
√

(Bn)+∧ (Cn)+. (47)

Note that by the optimality of β̂ in the LASSO problem, and letting δ̂ = β̂ −β0,

Bn = Q̂(β̂ )− Q̂(β0) 6 λ
n (‖β0‖1−‖β̂‖1) 6 λ

n (‖δ̂T‖1−‖δ̂T c‖1). (48)

If ‖δ̂T c‖1 > c̄‖δ̂T‖1, we have Q̂(β̂ )− Q̂(β0) 6 0 since c̄ > 1. Otherwise, if ‖δ̂T c‖1 6
c̄‖δ̂T‖1, by RE(c) we have

Bn := Q̂(β̂ )− Q̂(β0) 6 λ
n
‖δ̂T‖1 6 λ

n

√
s‖δ̂‖2,n

κc̄
. (49)

The choice of λ yields λ > cn‖S‖∞ with probability 1−α . Thus, by applying
Theorem 1, which requires λ > cn‖S‖∞, we can bound ‖δ̂‖2,n.

Finally, with probability 1−α − γ we have that (47) and (49) with ‖δ̂‖2,n 6
(1+1/c)λ

√
s/nκc̄ +2cs hold, and the result follows since if T ⊆ T̂ we have Cn = 0

so that Bn∧Cn 6 1{T 6⊆ T̂}Bn.

Proof (Theorem 4). Consider the case of Post-LASSO; the proof for LASSO is
similar. Consider the case with k = 1, i.e. when σ̂ = σ̂ k for k = 1. Then we have
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∣∣∣∣∣
Q̂(β̃ )

σ2 − En[ε2
i ]

σ2

∣∣∣∣∣ 6
‖β̃ −β0‖2

2,n

σ 2 +
‖S‖∞‖β̃ −β0‖1

σ2 +

+
2cs‖β̃ −β0‖2,n

σ2 +
2cs

√
En[ε2

i ]

σ2 +
c2

s

σ2 = oP(1).

since ‖β̃ − β0‖2,n .P σ
√

(s/n) log p by Corollary 3 and by assumption on σ̂0,
‖S‖∞ .P σ

√
(1/n) log p by Lemma 8, ‖β̃−β0‖1 6

√
ŝ ‖β̃−β‖2 .P

√
ŝ ‖β̃−β‖2,n

by condition RSE, ŝ .P s by Corollary 2 and cs . σ
√

s/n by condition ASM, and

s log p/n→ 0 by assumption, and En[ε2
i ]

σ2 −1→P 0 by the Chebyshev inequality. Fi-
nally, n/(n− ŝ) = 1 + oP(1) since ŝ .P s by Corollary 2 and s log p/n → 0. The
result for 2 6 k 6 I−1 follows by induction.

10 Auxiliary Lemmas

Recall that ‖S/(2σ)‖∞ = max16 j6p |En[xi jgi]|, where gi are i.i.d. N(0,1), for i =
1, ...,n, conditional on X = [x′1, ...,x

′
n]
′, and En[x2

i j] = 1 for each j = 1, ..., p, and
note that P(n‖S/(2σ)‖∞ > Λ(1−α|X)|X) = α by definition.

Lemma 8. We have that for t > 0:

P(n‖S/(2σ)‖∞ > t
√

n|X) 6 2p(1−Φ(t)) 6 2p
1
t

φ(t),

Λ(1−α|X) 6
√

nΦ−1(1−α/2p) 6
√

2n log(2p/α),

P(n‖S/(2σ)‖∞ >
√

2n log(2p/α)|X)≤ α.

Proof. To establish the first claim, note that
√

n‖S/2σ‖∞ = max16 j6p |Z j|, where
Z j =

√
nEn[xi jgi] are N(0,1) by gi i.i.d. N(0,1) conditional on X and by En[x2

i j] =
1 for each j = 1, ..., p. Then the first claim follows by observing that for z > 0
by the union bound P(max16 j6p |Z j| > z) 6 pP(|Z j| > z) = 2p(1−Φ(z)) and by
(1−Φ(z)) =

∫ ∞
z φ(u)du 6

∫ ∞
z (u/z)φ(u)dz 6 (1/z)φ(z). The second and third claim

follow by noting that 2p(1−Φ(t ′)) = α at t ′ = Φ−1(1−α/2p), and 2p 1
t ′′ φ(t ′′) = α

at t ′′ 6
√

2log(2p/α), so that, in view of the first claim, Λ(1−α|X) 6 √
nt ′ 6√

nt ′′.

Lemma 9 (Sub-linearity of restricted sparse eigenvalues). For any integer k > 0
and constant ` > 1 we have φ(d`ke) 6 d`eφ(k).

Proof. Let W := En[xix′i] and ᾱ be such that φ(d`ke) = ᾱ ′W ᾱ , ‖ᾱ‖ = 1. We can
decompose the vector ᾱ so that
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ᾱ =
d`e
∑
i=1

αi, with
d`e
∑
i=1
‖αiT c‖0 = ‖ᾱT c‖0 and αiT = ᾱT /d`e ,

where we can choose αi’s such that ‖αiT c‖0 6 k for each i = 1, ...,d`e, since d`ek >
d`ke. Note that the vectors αi’s have no overlapping support outside T . Since W is
positive semi-definite, α ′

iWαi +α ′
jWα j > 2

∣∣α ′
iWα j

∣∣ for any pair (i, j). Therefore

φ(d`ke) = ᾱ ′W ᾱ =
d`e
∑
i=1

d`e
∑
j=1

α ′
iWα j

6
d`e
∑
i=1

d`e
∑
j=1

α ′
iWαi +α ′

jWα j

2
= d`e

d`e
∑
i=1

α ′
iWαi

6 d`e
d`e
∑
i=1
‖αi‖2φ(‖αiT c‖0) 6 d`e max

i=1,...,d`e
φ(‖αiT c‖0) 6 d`eφ(k),

where we used that

d`e
∑
i=1
‖αi‖2 =

d`e
∑
i=1

(‖αiT‖2 +‖αiT c‖2) =
‖ᾱT‖2

d`e +
d`e
∑
i=1
‖αiT c‖2 6 ‖ᾱ‖2 = 1.

Lemma 10. Let c̄ = (c+1)/(c−1) we have for any integer m > 0

κc̄ > κ(m)
(

1−µ(m)c̄
√

s
m

)
.

Proof. We follow the proof in [8]. Pick an arbitrary vector δ such that ‖δT c‖1 6
c̄‖δT‖1. Let T 1 denote the m largest components of δT c . Moreover, let T c =∪K

k=1T k

where K = d(p− s)/me, |T k|6 m and T k corresponds to the m largest components
of δ outside T ∪ (∪k−1

d=1T d).
We have

‖δ‖2,n > ‖δT∪T 1‖2,n−‖δ(T∪T 1)c‖2,n > κ(m)‖δT∪T 1‖−
K

∑
k=2
‖δT k‖2,n

> κ(m)‖δT∪T 1‖−
√

φ(m)
K

∑
k=2
‖δT k‖.

Next note that
‖δT k+1‖6 ‖δT k‖1/

√
m.

Indeed, consider the problem max{‖v‖/‖u‖1 : v,u∈Rm,maxi |vi|6 mini |ui|}. Given
a v and u we can always increase the objective function by using ṽ = maxi |vi|(1, . . . ,1)′
and ũ′ = mini |ui|(1, . . . ,1)′ instead. Thus, the maximum is achieved at v∗ = u∗ =
(1, . . . ,1)′, yielding 1/

√
m.

Thus, by ‖δT c‖1 6 c̄‖δT‖1 and |T |= s
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K

∑
k=2
‖δT k‖6

K−1

∑
k=1

‖δT k‖1√
m

6 ‖δT c‖1√
m

6 c̄‖δT‖
√

s
m

6 c̄‖δT∪T 1‖
√

s
m

.

Therefore, combining these relations with ‖δT∪T 1‖> ‖δT‖> ‖δT‖1/
√

s we have

‖δ‖2,n > ‖δT‖1√
s

κ(m)
(

1−µ(m)c̄
√

s/m
)

which leads to √
s‖δ‖2,n

‖δT‖1
> κ(m)

(
1−µ(m)c̄

√
s/m

)
.
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Fig. 2 The figures illustrate the geometry of LASSO and Post-LASSO estimator.
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Fig. 3 The figure summarizes the covariate selection results for the design with σ = 1, based on
1000 Monte Carlo repetitions. The left panel plots the histogram for the number of covariates
selected by LASSO out of the possible 500 covariates, |T̂ |. The right panel plots the histogram for
the number of significant covariates selected by LASSO, |T̂ ∩ T |; there are in total 6 significant
covariates amongst 500 covariates. The sample size for each repetition was n = 100.
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Fig. 4 The figure summarizes the covariate selection results for the design with σ2 = 0.1, based
on 1000 Monte Carlo repetitions. The left panel plots the histogram for the number of covariates
selected out of the possible 500 covariates, |T̂ |. The right panel plots the histogram for the number
of significant covariates selected, |T̂ ∩T |; there are in total 6 significant covariates amongst 500
covariates. The sample size for each repetition was n = 100.
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Fig. 5 The figure summarizes the covariate selection results for the design with σ = 1, when
σ is estimated, based on 1000 Monte Carlo repetitions. The left panel plots the histogram for the
number of covariates selected out of the possible 500 covariates. The right panel plots the histogram
for the number of significant covariates selected; there are in total 6 significant covariates amongst
500 covariates. The sample size for each repetition was n = 100.
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Fig. 6 The figure displays the distribution of the estimator σ̂ of σ based on (iterative) LASSO, (it-
erative) Post-LASSO, and the conservative initial estimator σ̂0 =

√
Varn[yi]. The plots summarize

the estimation performance for the design with σ = 1, based on 1000 Monte Carlo repetitions.


