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Discrete-Time Finite-State Stochastic Games

Central tool in analysis of strategic interactions among
forward-looking players in dynamic environments

Example: The Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry

Little analytical tractability

Most popular tool in the analysis: The Pakes & McGuire (1994)
algorithm to solve numerically for an MPE (and variants
thereof)
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Applications

Advertising (Doraszelski & Markovich 2007)

Capacity accumulation (Besanko & Doraszelski 2004, Chen 2005,
Ryan 2005, Beresteanu & Ellickson 2005)

Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004)

Consumer learning (Ching 2002)

Firm size distribution (Laincz & Rodrigues 2004)

Learning by doing (Benkard 2004, Besanko, Doraszelski, Kryukov
& Satterthwaite 2010)
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Applications cont’d

Mergers (Berry & Pakes 1993, Gowrisankaran 1999)

Network externalities (Jenkins, Liu, Matzkin & McFadden 2004,
Markovich 2004, Markovich & Moenius 2007)

Productivity growth (Laincz 2005)

R&D (Gowrisankaran & Town 1997, Auerswald 2001, Song 2002,
Judd et al. 2011)

Technology adoption (Schivardi & Schneider 2005)

International trade (Erdem & Tybout 2003)

Finance (Goettler, Parlour & Rajan 2004, Kadyrzhanova 2005).

Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method



Motivation
Discrete-Time Finite-State Stochastic Games

Nonlinear Systems of Equations
Extensions

Need for better Computational Techniques

Doraszelski and Pakes (2007)

“Moreover the burden of currently available techniques for
computing the equilibria to the models we do know how to analyze
is still large enough to be a limiting factor in the analysis of many
empirical and theoretical issues of interest.”

Purpose of this paper: Solve large models with Newton’s Method
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Need for better Computational Techniques II

Weintraub et al. (2008)

“There remain, however, some substantial hurdles in the
application of EP-type models. Because EP-type models are
analytically intractable, analyzing market outcomes is typically
done by solving for Markov perfect equilibria (MPE) numerically on
a computer, using dynamic programming algorithms (e.g., Pakes
and McGuire (1994)). This is a computational problem of the
highest order. [...] in practice computational concerns have
typically limited the analysis [...] Such limitations have made it
difficult to construct realistic empirical models, and application of
the EP framework to empirical problems is still quite difficult [...]
Furthermore, even where applications have been deemed feasible,
model details are often dictated as much by computational
concerns as economic ones.”
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Static Cournot Duopoly Game
Dynamic Setting
Markov Perfect Equilibrium

Cournot Competition

Single good produced by N = 2 firms

Firm i ’s production quantity qi

Total output Q = q1 + q2 sold at a single price P(Q)

Cost to firm i of producing qi is Ci (qi )

Firms’ profit functions (revenue minus cost)

π1(q1, q2) = q1 P(q1 + q2)− C1(q1)

π2(q1, q2) = q2 P(q1 + q2)− C2(q2)
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Dynamic Model

Infinite-horizon game in discrete time t = 0, 1, 2, . . .

At time t firm i is in one of finitely many states, θi ,t ∈ Θi

State space of the game Θ1 ×Θ2

State of the game: production cost of two firms

Firms engage in Cournot competition in each period t

π1,t = q1,t P (q1,t + q2,t)− θ1,tC1(q1,t)

π2,t = q2,t P (q1,t + q2,t)− θ2,tC2(q2,t)

Efficiency of firm i is given by θi ,t
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Learning and Investment

Firms’ states can change over time

Stochastic transition to state in next period depends on
three forces

Learning: current output may lead to lower production cost

Investment: firms can also make investment expenditures to
reduce cost

Depreciation: shock to efficiency may increase cost
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Dynamic Setting

Each firm can be in one of S states, j = 1, 2, . . . ,S

State j of firm i determines its efficiency level
θi = Θ(j−1)/(S−1) for some Θ ∈ (0, 1)

Total range of efficiency levels [Θ, 1] for any S

Possible transitions from state j to states j − 1, j , j + 1 in
next period

Transition probabilities for firm i depend on
production quantity qi
investment effort ei
depreciation shock
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Transition Probabilities

Probability of successful learning (j to j + 1), ψ(q) = κq
1+κq

Probability of successful investment (j to j + 1), φ(e) = αe
1+αe

Cost of investment for firm i , CIi (e) = 1
S−1

(
1
2die

2
)

Probability of depreciation shock (j to j − 1), δ

These individual probabilities, appropriately combined, yield
transition probabilities Pr (θ′|q, e; θ)
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Transition Probabilities cont’d

Law of motion: State follows a controlled discrete-time,
finite-state, first-order Markov process with transition
probability

Pr
(
(θ′1, θ

′
2)|q1,t , e1,t , q2,t , e2,t ; (θ1,t , θ2,t)

)
Typical assumption of independent transitions:

Pr
(
(θ′1, θ

′
2)|q1,t , e1,t , q2,t , e2,t ; (θ1,t , θ2,t)

)
=

2∏
i=1

Pri
(
θ′i |qi ,t , ei ,t ; θi ,t

)
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Objective Function

Notation: actions ut = (q1,t , e1,t , q2,t , e2,t), ui ,t = (qi ,t , ei ,t)
states θt = (θ1,t , θ2,t)

Firm i receives total payoff Πi (ut ; θt) in period t from
Cournot competition and investment

Objective is to maximize the expected NPV of future cash flows

E

{ ∞∑
t=0

βtΠi (ut ; θt)

}

with discount factor β ∈ (0, 1)

Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method



Motivation
Discrete-Time Finite-State Stochastic Games

Nonlinear Systems of Equations
Extensions

Static Cournot Duopoly Game
Dynamic Setting
Markov Perfect Equilibrium

Bellman Equation

Vi (θ) is the expected NPV to firm i if the current state is θ

Bellman equation for firm i is

Vi (θ) = max
ui

Πi (ui ,U−i (θ) ; θ) + βEθ′
{
Vi

(
θ′
)
|ui ,U−i (θ) ; θ

}
with feedback (Markovian) strategies U−i (θ) of other firms

Player i ’s strategy Ui (θ) must satisfy

Ui (θ) = arg max
ui

{
Πi (ui ,U−i (θ) ; θ) + βEθ′

{
Vi

(
θ′
)
|ui ,U−i (θ) ; θ

}}
System of equations defined above for each firm i and each

state θ ∈ Θ defines a pure-strategy Markov Perfect Equilibrium
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Equilibrium Conditions

Unknowns Ui (θ), Vi (θ) for each state θ

Vi (θ) = Πi (ui ,U−i (θ) ; θ) + βEθ′
{
Vi

(
θ′
)
|ui ,U−i (θ) ; θ

}
∂

∂ui

{
Πi (ui ,U−i (θ) ; θ) + βEθ′

{
Vi

(
θ′
)
|ui ,U−i (θ) ; θ

}}
= 0

Quadratic cost functions ensure interior solutions Ui (θ) >> 0

First-order conditions are necessary and sufficient

Nonlinear system of equations

Three equations per firm per state, total of 6S2 equations
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Nonlinear Systems of Equations

System F (x) = 0 of n nonlinear equations in n variables
x = (x1, x2, . . . , xn) ∈ Rn

F1(x1, x2, . . . , xn) = 0

F2(x1, x2, . . . , xn) = 0
...

Fn−1(x1, x2, . . . , xn) = 0

Fn(x1, x2, . . . , xn) = 0
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Solution Methods

Most popular methods in economics for solving F (x) = 0

1 Jacobi Method

Value function iteration in dynamic programming

2 Gauss-Seidel Method

Iterated best replies in game theory

3 Homotopy Methods

Long history in general equilibrium theory

4 Newton’s Method

Modern implementations largely ignored
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Jacobi Method

Last iterate xk = (xk1 , x
k
2 , x

k
3 , . . . , x

k
n−1, x

k
n )

New iterate xk+1 computed by repeatedly solving one equation in
one variable using only values from xk

F1(xk+1
1 , xk2 , x

k
3 , . . . , x

k
n−1, x

k
n ) = 0

F2(xk1 , x
k+1
2 , xk3 , . . . , x

k
n−1, x

k
n ) = 0

...

Fn−1(xk1 , x
k
2 , . . . , x

k
n−2, x

k+1
n−1 , x

k
n ) = 0

Fn(xk1 , x
k
2 , . . . , x

k
n−2, x

k
n−1, x

k+1
n ) = 0

Interpretation as iterated simultaneous best reply
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Gauss-Seidel Method

Last iterate xk = (xk1 , x
k
2 , x

k
3 , . . . , x

k
n−1, x

k
n )

New iterate xk+1 computed by repeatedly solving one equation in
one variable and immediately updating the iterate

F1(xk+1
1 , xk2 , x

k
3 , . . . , x

k
n−1, x

k
n ) = 0

F2(xk+1
1 , xk+1

2 , xk3 , . . . , x
k
n−1, x

k
n ) = 0

...

Fn−1(xk+1
1 , xk+1

2 , . . . , xk+1
n−2 , x

k+1
n−1 , x

k
n ) = 0

Fn(xk+1
1 , xk+1

2 , . . . , xk+1
n−2 , x

k+1
n−1 , x

k+1
n ) = 0

Interpretation as iterated sequential best reply
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Fixed-point Iteration

Reformulation

F (x) = 0 ⇐⇒ x − αF (x) = x

yields fixed-point problem G (x) = x with G (x) = x − αF (x)

Fixed-point iteration

x (k+1) = G (x (k))

is also called Nonlinear Richardson iteration or Picard iteration
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Solving a Simple Cournot Game

N firms

Firm i ’s production quantity qi

Total output is Q = q1 + q2 + . . .+ qN

Linear inverse demand function, P (Q) = A− Q

All firms have identical cost functions C (q) = 2
3cq

3/2

Firm i ’s profit function Πi is

Πi = qiP (qi + Q−i )− C (qi ) = qi (A− (qi + Q−i ))− 2

3
cq

3/2
i
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First-order Conditions

Necessary and sufficient first-order conditions

A− Q−i − 2qi − c
√
qi = 0

Firm i ’s best reply BR(Q−i ) to a production quantity Q−i of its
competitors

qi = BR(Q−i ) =

(
A− Qi

2
+

c2

8

)
− c

2

√
A− Q−i

2
+

c2

16

Parameter values: N = 4 firms, A = 145, c = 4

Cournot equilibrium qi = 25 for all firms
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Jacobi with N = 4 firms blows up

q0 = (24, 25, 25, 25)

k qk1 qk2 = qk3 = qk4 maxi |qki − qk−1i |
1 25 25.4170 1
2 24.4793 24.6527 0.7642
3 25.4344 25.5068 0.9551
4 24.3672 24.3973 1.1095
5 25.7543 25.7669 1.3871

13 29.5606 29.5606 8.1836
14 19.3593 19.3593 10.201
15 32.1252 32.1252 12.766

20 4.8197 4.8197 37.373
21 50.9891 50.9891 46.169
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Solving the Cournot Game with Gauss-Seidel

q0 = (10, 10, 10, 10)

k qk1 qk2 qk3 qk4 maxi |qki − qk−1i |
1 56.0294 32.1458 19.1583 11.9263 55.029
2 29.9411 30.8742 25.9424 20.1446 26.088
3 24.1839 26.9767 26.5433 23.8755 5.7571

10 25.0025 25.0016 24.9990 24.9987 5.6080 (−3)
11 25.0003 25.0008 25.0001 24.9995 2.1669 (−3)
12 24.9998 25.0003 25.0002 24.9999 5.8049 (−4)

16 25.0000 25.0000 25.0000 25.0000 1.1577 (−5)
17 25.0000 25.0000 25.0000 25.0000 4.1482 (−6)
18 25.0000 25.0000 25.0000 25.0000 1.1891 (−6)
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Contraction Mapping

Let X ⊂ Rn and let G : X → Rm. The function G is Lipschitz
continuous on X with Lipschitz constant γ ≥ 0 if

||G (x)− G (y)|| ≤ γ||x − y ||

for all x , y ∈ X .

Let X ⊂ Rn and let G : X → Rn. The function G is a contraction
mapping on X if G is Lipschitz continuous on X with Lipschitz
constant γ < 1.

Lipschitz constant of contraction mapping G is also called
modulus of G

Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method
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Contraction Mapping Theorem

Contraction Mapping Theorem. Suppose that G : X → Rn is a
contraction mapping on the closed subset X of Rn and that
G (X ) ⊂ X . Then the following conditions hold.

(1) The function G has a unique fixed point x∗ ∈ X .

(2) For all x (0) ∈ X the sequence generated by the fixed-point
iteration x (k+1) = G (x (k)) converges linearly to x∗. �

Modulus γ < 1 of G yields constant for linear convergence

||x (k+1) − x∗|| = ||G (x (k))− G (x∗)|| ≤ γ||x (k) − x∗||

Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method
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Mode of Updating Iterates

Fixed-point iteration x (k+1) = G (x (k)) updates all components of
x simultaneously; Jacobi-mode of updating

x
(k+1)
i = Gi (x

(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, x

(k)
i , x

(k)
i+1, . . . , x

(k)
n )

Gauss-Seidel mode of updating is also possible

x
(k+1)
i = Gi (x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1, . . . , x

(k)
n )

Theorem. Suppose that G : X → Rn is a contraction mapping
on the set X =

∏n
i=1 Xi , where each Xi is a nonempty closed

subset of R, and that G (X ) ⊂ X . Then for all x (0) ∈ X the
sequence generated by the fixed-point iteration x (k+1) = G (x (k))
with a Gauss-Seidel mode of updating converges linearly to the
unique fixed point x∗ of G . �
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Alternative Solution Methods

Jacobi component solution method: for all i = 1, 2, . . . , n the

new iterate x
(k+1)
i is a solution of the single equation

xi = Gi (x
(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, xi , x

(k)
i+1, . . . , x

(k)
n )

in the single variable xi

Gauss-Seidel component solution method: for all

i = 1, 2, . . . , n the new iterate x
(k+1)
i is a solution of the single

equation

xi = Gi (x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , xi , x

(k)
i+1, . . . , x

(k)
n )

in the single variable xi
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Convergence of Component Solution Methods

Theorem. Suppose that G : X → Rn is a contraction mapping
on the set X =

∏n
i=1 Xi , where each Xi is a nonempty closed

subset of R, and that G (X ) ⊂ X . Then for all x (0) ∈ X the
sequence generated by the Jacobi component solution method
converges linearly to the unique fixed point x∗ of G . Similarly, the
sequence generated by the Gauss-Seidel component solution
method converges linearly to x∗. �

Modest generalization to pseudo-contraction mappings possible
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Sufficient Condition for Contraction Mapping

Theorem. Suppose that X is a nonempty convex subset of Rn

and that F : X → Rn is continuously differentiable. Further
suppose that ∑

j 6=i

∣∣∣∣∂Fi (x)

∂xj

∣∣∣∣ < ∂Fi (x)

∂xi
≤ K

for all i = 1, 2, . . . , n and for all x ∈ X . Then the mapping
G : X → Rn defined by

G (x) = x − αF (x)

with 0 < α < 1
K is a contraction mapping (with respect to the

maximum norm). �

Resemblance to a diagonal dominance condition
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Iterative Methods for Finding Zeros

SOR = successive overrelaxation

Nonlinear Jacobi SOR method

For all i = 1, 2, . . . , n solve

Fi (x
(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, xi , x

(k)
i+1, . . . , x

(k)
n ) = 0

for xi ; with ω ∈ (0, 2) set

x
(k+1)
i = x

(k)
i + ω(xi − x

(k)
i )

Nonlinear Gauss-Seidel SOR method

For all i = 1, 2, . . . , n solve

Fi (x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , xi , x

(k)
i+1, . . . , x

(k)
n ) = 0

for xi ; with ω ∈ (0, 2) set

x
(k+1)
i = x

(k)
i + ω(xi − x

(k)
i )
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Global Convergence Theorem for Nonlinear SOR Methods

Theorem. Suppose the function F : Rn → Rn has the following
properties.

(1) F is a continuous function from Rn onto Rn.

(2) F (x) ≤ F (y) implies x ≤ y for all x , y ∈ Rn.

(3) Fi : Rn → R is decreasing in xj for all j 6= i .

Then for ω ∈ (0, 1], any b ∈ Rn, and from any starting point
x0 ∈ Rn the sequences generated by the Jacobi SOR method and
the Gauss-Seidel SOR method, respectively, converge to the unique
solution x∗ of F (x) = b. �
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Iterates of Jacobi SOR Method, w = 0.9

k qk1 qk2 = qk3 = qk4 maxi |qki − qk−1i |
1 24.9 25.3753 0.9
2 24.5682 24.7937 0.581566

97 27.731 27.731 5.38011
98 22.2193 22.2193 5.51166
99 27.8673 27.8673 5.64804

100 22.0815 22.0815 5.78587

341 43.2918 43.2918 35.6236
342 7.6682 7.6682 35.6236
343 43.2918 43.2918 35.6236
344 7.6682 7.6682 35.6236
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Iterates of Jacobi SOR Method, w = 0.5

k qk1 qk2 = qk3 = qk4 maxi |qki − qk−1i |
1 24.5 25.2085 0.5
2 24.6198 25.1215 0.11976
3 24.7339 25.0893 0.11418
4 24.8111 25.0629 0.077200
5 24.8663 25.0446 0.055139

15 24.9957 25.0014 1.7508 (−3)
16 24.9970 25.0010 1.2402 (−3)
17 24.9979 25.0007 8.7845 (−4)

33 25.0000 25.0000 3.5279 (−6)
34 25.0000 25.0000 2.4989 (−6)

Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method
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Summary

Fixed-point iteration in all its variations (Jacobi mode or
Gauss-Seidel mode of updating, Jacobi or Gauss-Seidel component
solution method) requires contraction property for convergence

Nonlinear Jacobi SOR or Gauss-Seidel SOR methods require strong
monotonicity properties for convergence

Conjecture: these sufficient conditions are rarely satisfied by
economic models

Conclusion: do not be surprised if these methods do not work

Methods do have the advantage that they are easy to implement,
which explains their popularity in economics
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Taylor’s Theorem

Theorem. Suppose the function F : X → Rm is continuously
differentiable on the open set X ⊂ Rn and that the Jacobian
function JF is Lipschitz continuous at x with Lipschitz constant
γ l(x). Also suppose that for s ∈ Rn the line segment x + θs ∈ X
for all θ ∈ [0, 1]. Then, the linear function L(s) = F (x) + JF (x)s
satisfies

‖F (x + s)− L(s)‖ ≤ 1

2
γL(x)‖s‖2 .

�

Taylor’s Theorem suggests the approximation
F (x + s) ≈ L(s) = F (x) + JF (x)s

Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method
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Newton’s Method in Pure Form

Initial iterate x0

Given iterate xk choose Newton step by calculating a solution sk

to the system of linear equations

JF (xk) sk = −F (xk)

New iterate xk+1 = xk + sk

Excellent local convergence properties
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Standard Assumptions

Standard assumptions on the function F : X → Rn where
X ⊂ Rn

(1) The system of equations F (x) = 0 has a solution x∗.

(2) The function JF : X → Rn×n is Lipschitz continuous with
Lipschitz constant γ.

(3) The matrix JF (x∗) is nonsingular.
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Local Convergence

Open neighborhood around a point y

Bδ(y) = {x : ||x − y || < δ}

Classical local convergence result for Newton’s method

Theorem. Suppose the standard assumptions hold. Then there
exists δ > 0 such that for x0 ∈ Bδ(x∗) the Newton iteration

xk+1 = xk − [JF (xk)]−1F (xk)

is well-defined (that is, JF (xk) is nonsingular) and generates a
sequence of iterates x0, x1, . . . , xk , xk+1, . . . which converges
quadratically to x∗, that is, for all sufficiently large k , there is
K > 0 such that

||xk+1 − x∗|| ≤ K ||xk − x∗||2.
�Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method
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Solving Cournot Game (N = 4) with Newton’s Method

k qki maxi |qki − qk−1i | ‖F (qk)‖
0 10 − 164.70

1 24.6208 14.6208 4.0967
2 24.9999 0.3791 1.1675 (−3)
3 25.0000 1.0810 (−4) 9.3476 (−11)
4 25.0000 8.6615 (−12) 2.0409 (−14)
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Shortcomings of Newton’s Method

If initial guess x0 is far from a solution Newton’s method may
behave erratically; for example, it may diverge or cycle

If JF (xk) is singular the Newton step may not be defined

It may be too expensive to compute the Newton step sk for large
systems of equations

The root x∗ may be degenerate (JF (x∗) is singular) and
convergence is very slow

Practical variants of Newton-like methods overcome most of these
issues
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Merit Function for Newton’s Method

General idea: Obtain global convergence by combining the Newton
step with line-search or trust-region methods from optimization

Merit function monitors progress towards root of F

Most widely used merit function is sum of squares

M(x) =
1

2
‖F (x)‖2 =

1

2

n∑
i=1

F 2
i (x)

Any root x∗ of F yields global minimum of M

Local minimizers with M(x) > 0 are not roots of F

∇M(x̃) = JF (x̃)>F (x̃) = 0

and so F (x̃) 6= 0 implies JF (x̃) is singular
Ferris, Judd, Schmedders Solving Dynamic Games with Newton’s Method
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Line-Search Method

Newton step
Jf (xk) sk = −F (xk)

yields a descent direction of M as long as F (xk) 6= 0(
sk
)>
∇M(xk) =

(
sk
)>

JF (xk)>F (xk) = −‖F (xk)‖2 < 0

Given step length αk the new iterate is

xk+1 = xk + αksk
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Step Length

Inexact line search condition (Armijo condition)

M(xk + αsk) ≤ M(xk) + c α
(
∇M(xk)

)>
sk

for some constant c ∈ (0, 1)

Step length is the largest α satisfying the inequality

For example, try α = 1, 12 ,
1
22
, 1
23
, . . .

This approach is not Newton’s method for minimization

No computation or storage of Hessian matrix
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Inexact Line-Search Newton method

Initial. Choose initial iterate x (0), stopping criteria ε > 0 and δ > 0,
and γ ∈ (0, 1] for the Armijo rule.

Step 1 Compute the Jacobian JF (xk); compute the Newton direction
sk as the solution to the linear system of equations
JF (xk) sk = −F (xk)

Step 2 (i) α = 1;
(ii) If M(xk + αsk) ≤ (1− γα)M(xk) then αk = α and
xk+1 = xk +αksk ; otherwise replace α by α/2 and repeat (ii);

Step 3 Compute F (xk+1); if ||F (xk+1)|| < δ and
||xk+1 − xk || < ε(1 + ||xk ||) stop; otherwise increase k by 1
and go to Step 1.
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Global Convergence

Assumption. The function F is well defined and the Jacobian JF
is Lipschitz continuous with Lipschitz constant γ in an open
neighborhood of the level set L =

{
x : ‖F (x)‖ ≤ ‖F (x0)‖

}
for the

initial iterate x0. Moreover, ‖J−1F ‖ is bounded on L. �

Theorem. Suppose the assumption above holds. If the sequence
{xk} generated by the inexact line search Newton method with the
Armijo rule remains bounded then it converges to a root x∗ of F at
which the standard assumptions hold, that is, full steps are taken
for k sufficiently large and the rate of convergence is quadratic. �
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Equilibrium Equations

Bellman equation for each firm

First-order condition w.r.t. quantity qi

First-order condition w.r.t. investment ei

Three equations per firm per state

Total of 6 S2 equations
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Solving Large Games in PATH

Generate 6 equations per state with Mathematica

Write output in GAMS format

Call PATH in GAMS
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GAMS Code I

V1(m1e,m2e) =e= Q1(m1e,m2e)*(1 - Q1(m1e,m2e)/M -
Q2(m1e,m2e)/M) - ((b1*power(Q1(m1e,m2e),2))/2. +
a1*Q1(m1e,m2e))*theta1(m1e) -
((d1*power(U1(m1e,m2e),2))/2. + c1*U1(m1e,m2e))/(-1 + Nst)
+ (beta*((1 - 2*delta + power(delta,2) +
Q2(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +
alpha*kappa*power(delta,2)*U1(m1e,m2e)) + (alpha*delta -
alpha*power(delta,2))*U2(m1e,m2e) +
Q1(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +
power(delta,2)*power(kappa,2)*Q2(m1e,m2e) +
alpha*kappa*power(delta,2)*U2(m1e,m2e)) +
U1(m1e,m2e)*(alpha*delta - alpha*power(delta,2) +
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GAMS Code II

power(alpha,2)*power(delta,2)*U2(m1e,m2e)))*V1(m1e,m2e) +
(delta - power(delta,2) + kappa*power(delta,2)*Q1(m1e,m2e) +
alpha*power(delta,2)*U1(m1e,m2e))*V1(m1e,m2e - 1) + ((alpha
- 2*alpha*delta + alpha*power(delta,2))*U2(m1e,m2e) +
(delta*power(alpha,2) -
power(alpha,2)*power(delta,2))*U1(m1e,m2e)*U2(m1e,m2e) +
Q2(m1e,m2e)*(kappa - 2*delta*kappa + kappa*power(delta,2) +
(alpha*kappa - alpha*delta*kappa)*U2(m1e,m2e) +
U1(m1e,m2e)*(alpha*delta*kappa - alpha*kappa*power(delta,2)
+ delta*kappa*power(alpha,2)*U2(m1e,m2e))) +
Q1(m1e,m2e)*((alpha*delta*kappa -
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GAMS Code III

alpha*kappa*power(delta,2))*U2(m1e,m2e) +
Q2(m1e,m2e)*(delta*power(kappa,2) -
power(delta,2)*power(kappa,2) +
alpha*delta*power(kappa,2)*U2(m1e,m2e))))*V1(m1e,m2e + 1)
+ (delta - power(delta,2) + kappa*power(delta,2)*Q2(m1e,m2e)
+ alpha*power(delta,2)*U2(m1e,m2e))*V1(m1e - 1,m2e) +
power(delta,2)*V1(m1e - 1,m2e - 1) + ((alpha*delta -
alpha*power(delta,2))*U2(m1e,m2e) +
Q2(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +
alpha*delta*kappa*U2(m1e,m2e)))*V1(m1e - 1,m2e + 1) +
((alpha*delta*kappa -
alpha*kappa*power(delta,2))*Q2(m1e,m2e)*U1(m1e,m2e) +
U1(m1e,m2e)*(alpha - 2*alpha*delta + alpha*power(delta,2) +
(delta*power(alpha,2) -
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GAMS Code IV

power(alpha,2)*power(delta,2))*U2(m1e,m2e)) +
Q1(m1e,m2e)*(kappa - 2*delta*kappa + kappa * power(delta,2)
+ Q2(m1e,m2e) * (delta * power(kappa,2) -
power(delta,2)*power(kappa,2) +
alpha*delta*power(kappa,2)*U1(m1e,m2e)) +
(alpha*delta*kappa - alpha*kappa*power(delta,2))*U2(m1e,m2e)
+ U1(m1e,m2e)*(alpha*kappa - alpha*delta*kappa +
delta*kappa*power(alpha,2)*U2(m1e,m2e))))*V1(m1e + 1,m2e)
+ ((alpha*delta - alpha*power(delta,2))*U1(m1e,m2e) +
Q1(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +
alpha*delta*kappa*U1(m1e,m2e)))*V1(m1e + 1,m2e - 1) +
((power(alpha,2) - 2*delta*power(alpha,2) +
power(alpha,2)*power(delta,2))*U1(m1e,m2e)*U2(m1e,m2e) +
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GAMS Code V

Q2(m1e,m2e)*U1(m1e,m2e)*(alpha*kappa - 2*alpha*delta*kappa
+ alpha*kappa*power(delta,2) + (kappa*power(alpha,2) -
delta*kappa*power(alpha,2))*U2(m1e,m2e)) +
Q1(m1e,m2e)*((alpha*kappa - 2*alpha*delta*kappa +
alpha*kappa*power(delta,2))*U2(m1e,m2e) +
(kappa*power(alpha,2) -
delta*kappa*power(alpha,2))*U1(m1e,m2e)*U2(m1e,m2e) +
Q2(m1e,m2e)*(power(kappa,2) - 2*delta*power(kappa,2) +
power(delta,2)*power(kappa,2) + (alpha*power(kappa,2) -
alpha*delta*power(kappa,2))*U2(m1e,m2e) +
U1(m1e,m2e)*(alpha*power(kappa,2) -
alpha*delta*power(kappa,2) +
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GAMS Code VI

power(alpha,2)*power(kappa,2)*U2(m1e,m2e)))))*V1(m1e +
1,m2e + 1)))/((1 + kappa*Q1(m1e,m2e))*(1 +
kappa*Q2(m1e,m2e))*(1 + alpha*U1(m1e,m2e))*(1 +
alpha*U2(m1e,m2e)));

And that was just one of 6 equations
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Results

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Functional Forms

Until now quadratic cost functions yield interior solutions

Production cost Ci (q) = 1
2biq

2

Investment cost CIi (e) = 1
S−1

(
1
2die

2
)

No longer true for other cost functions, e.g. with ai , ci > 0,

Ci (q) = aiq +
1

2
biq

2, CIi (e) = cie +
1

S − 1

(
1

2
die

2

)

Boundary solutions possible
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Complementarity Problems

First-order conditions remain necessary and sufficient
but become nonlinear complementarity conditions

0 ≤ ui ⊥ −
∂

∂ui

{
Πi (ui ,U−i (θ) ; θ) + βEθ′

{
Vi

(
θ′
)
|ui ,U−i (θ) ; θ

}}
≥ 0

Together with value function equations we obtain a
mixed complementarity problem

Initial results indicate that PATH solves MCPs almost as fast as
nonlinear equations
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Enhancements

More firms result in larger problems

Transitions beyond j − 1, j , j + 1 lead to less sparse problems

“Realistic” functional forms such as CES demand
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