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Curse of Dimensionality
e Many economic models are high dimensional

— Dynamic Optimization: Multiple kinds of capital stocks

— DSGE: Multiple consumers/firms/countries

— (Games: Multiple players and states

— Bayesian analyses compute high-dimensional integrals

— Bootstrapping: analyze many n-dimensional samples from n data points
— Simulation of large Markov processes - MCMC, Gibbs sampling, ACE

— Parameter space searches to find robust conclusions
e Claim: “You can’t solve your model because of the curse of dimensionality.”
e Response I: Analyze silly models

— Reduce heterogeneity in tastes, abilities, age, etc.
— Assume no risk

— Assume common information, beliefs, and learning rules

e Response II: Do bad math
e Response III: Do bad math when analyzing silly models



e The message today: “The curse is not so bad”

— “Theorems” about the curse are irrelevant for economics

— There are many underutilized tools from math that can help

— Sensible modelling choices can avoid curse

— Mathematicians are currently developing tools to tackle the curse
— Physicists are working to build computers that can avoid the curse

— If the Boston Red Sox can beat the “Curse of the Bambino” then economists
can beat the “Curse of Dimensionality”



Dynamic Example - Dynamic Programming
e Basic Bellman equation:

V(z) = urglgé) m(u, ) + B E{V(z")|z,u)} = (TV)(x). (12.7.1)

e Computational task:

— Choose a finite-dimensional parameterization (e.g., polynomials, splines, etc.)

AN

V(z)=V(z;a), a € R™ (12.7.2)
and a finite number of states
X =A{xy, 29, , 1}, (12.7.3)

— Objective: find coeflicients a € R such that V(az, a) “approximately” satisfies
the Bellman equation.
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e Value function iteration: For each z;, (T'V)(z;) is defined by

= (TV)(z;) = max m(u,z;)+ ﬁ/V(az ca)dF (x 7|2, u) (12.7.5)

ucD(x)
e In practice, we compute the approximation T
vj = (TV)(x;) = (TV)(x))

— Integration step: for w; and z; for some numerical quadrature formula
E{V(zt;a)|x;,u)} = /V( g(zj,u,e); ngv g(z;,u,0); a)

— Maximization step: for x; € X, evaluate
= (TV)()

— After finding the new v;, we execute a fitting step:
« Data: (v, z;), i=1,---,n
+« Objective: find an @ € R™ such that V(x; a) best fits the data

— Value function iteration iterates on the coefficient vector a.



e Dimension is important at many stages

— Solving the multidimensional optimization problem: u € R implies m? ele-
ments in Hessian

— Approximating the n - dimensional value function V' (x) and choosing the points
z;: cost of simple methods is proportional to e" - curse of dimensionality!

— Integrating the conditional expectation with ¢ - dimensional shocks: many
methods have costs proportional to e? - curse of dimensionality!

e The good news: For many (if not most) problems in economics

— m - dimensional Hessians cost only m to compute
— n - dimensional approximation is polynomial in n

— ¢ - dimensional integrals of C* functions can use /N points and converge at rate
N~* independent of dimension!

— Physics offers new ways to defeat the curse of dimensionality.



Dynamic Example - Euler Equation Models

e Fuler equation for simple growth model
u'(C(k)) = pu(C(F(k) — C(k))F'(F(k) — C(k)) (16.4.2)
— When k is n-dimensional, we need to approximate n-dimensional functions
C (k)
— Identifying coefficients in C' (k) approximation is an integration problem

— When we add uncertainty, we get multidimensiona integrals for conditional
expectations on right hand side.

— Dynamic equilibrium models have the same computational needs as dynamic

programming.

e Same computational tasks are present for dynamic games, which have both value
functions and policy functions to compute.



Evaluating Derivatives Efficiently
e Common belief: “Newton’s method is impractical for large problems”

— Analytic derivatives are slow

Analytic Derivatives
+,- *,+— Power Total Total

flops time

function — w= (27 +y” + 27)" 2 0 4 6 22
gradient — u, = opx” (" + 47 +2°)""" 4 3 5 32
u, = opy’ (7 +y7 + 20" 43 5 32

u, = opz’ N(x+y 4+ 20" 43 5 32

grad. total: 12 9 15 36 114

Hessian >400



— Finite differences are slow

function

gradient

grad total:
Hessian

Finite Difference Derivatives

+r
u= (27 +y° +2°)° 2
uSU:(U(Qf—l-A,y,Z)—U)/A 3
uy, = (u(x,y+ A, 2) —u) /A 3
uZ:(U<£If,y,Z—|—A>—U)/A 3

9

* +— Power Total Total

QO = = =

4

=~ = &=

12

flops
6

24

time

22

24
24
24
72
>150



e Automatic Differentiation to the rescue! Reduce redundant computations

Appx.

+- * =+ a® Total clock

flops time

function x1 =2, yl=9%, 21 =2° 0 3 3 15
A=zl+yl+ 21 2 2 2

u= A’ 1 1 5

2 0 4 6 22

gradient 22 =xl/x, y2 =yl/y, 22 =21/z, 3 3 3
Al=pou/A 3 3 3

u, = x2 Al 1 1 1

uy, = y2 Al 1 1 1

u, = 22 Al 1 1 1

grad. cost 9 9

15 31

— T'wo kinds of gains

*x Fewer operations

+ Less use of expensive operations: power (~10 adds), exponential (75 adds),



e Insights are old

— Many, including Leigh Tesfatsion, recognized these ideas by mid 1980’s.

— Software development was slow. Tesfatsion was an early contributor.

e Theorem: (Griewank) For an n-dimensional function f:

— Cost (Jacobian) < 5 Cost (f)
— Cost (Hessian) < 5 n Cost (f)

e Comments:

— This is worst-case analysis

— This ignores any savings from avoiding costly operations.



e Current applications and implications

— Use Newton methods (and discard DFP, BFGS, and BHHH)
* AD is now incorporated into much software; AMPL and GAMS (but not
empirical packages!)
x L-B-J versus Fair-Taylor: already exploits sparseness, could exploit AD
x Solve stochastic dynamic games - Pakes-Maguire
- Most use Gauss—Seidel methods (e.g., mimic best reply dynamics)
- Ferris-Judd-Schmedders: 10,000 states, 40,000 unknowns with binding

constraints; done in 5 seconds on a laptop

— Perturbation methods
x Perturbation methods are gaining in popularity: Judd, Guu, Gaspar, An-
derson, Juillard, Collard, Kim?, Jesus Fernandez-Villaverde, Juan Rubio.
x Some have incorporated AD ideas into their code: Anderson-Levin-Swanson

+ Laplace expansions in statistics.



Function Approximation

e Linear polynomial methods:

m

flz,y,z,..)= Z a;p; (x,y, 2, ...), ¢, multivariate polynomials
i=1

— Choices for ¢ are tensor versus complete:

degree 1 in each variable degree 2 in each variable
one D 1, 1, z, 2z

2D tensor  {1,z} ® {1,y} {1,2,2°} @ {1,y,y*}
product = {1,z,y,zy} = {1,513,5132,%9275’3%

3D tensor {l,z}®{l,y} ® {1, z} 332?J7-T?J27-T2y2}
product ={1,x,y,z2, 2y, r2,yz, xYyz}

2D complete 1,z,y 1,2, 2% y,9y% oy

3D complete 1,z,y, 2 1, 2,y, 2,2y, 22, Y2, T2, y°, 2

2

Y
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— Proper notion of “degree” in multivariate context is sum of powers
degree (xzy]zk) =i1+7+Fk
— Complete polynomials like

i gk
E i kT Yy 2
i+j+k<m
have far fewer terms than tensor products like

m m m
5 J‘ S J‘ S J‘ aijarzyjzk

i=0 j=0 k=0

with ratio being about d! in d-dimensional case.

— Complete polynomials are better in terms of approximation power per term

degree k& Number terms in complete poly Number terms in tensor product

2 R 50’ 3"

3 ~ %n?’ 4n

— See Gaspar-Judd (1997), Kubler-Krueger (2003).



e Splines

— One dimension is easy
m

i=0
— Tensor approach is bad; no “complete” approach since no B; covers all x, y:

Z Z a;;Bi (z) Bj (y)

i=0 j=0
— Radial basis functions to the rescue:

x Functional form uses arbitrary, scattered points p; in
N
> o (e = pil
i=1
* ¢ choices include

2 1 1
e ", : N1+
V1472 1472

x New results show that these can be excellent approximations. Need to figure
out best choices for p; points.

x Recent work shows that RBFs can be very effective on PDEs similar to ones
from economics.



Defining the Domain

e Choosing the domain of our problem (e.g., states in a DP or dynamic GE model)
1s iImportant

— Want to include values for state that are part of the solution

— Choosing too large a domain will create unnecessary computational burdens.
e More choices with higher dimensions

— One dimension: Domain is interval; just need to know max and min
— Two dimensions: More choices - square/rectangle, sphere/ellipse, simplex, etc.

— Three dimensions: More choices - cube, sphere, ellipsoid, cylinder, simplex, etc.

e Judd (1992), Gaspar-Judd (1997) made mechanical choice of hypercubes.
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e Cube versus Sphere

— Spheres are much more compact:

+ In cube of unit length at edge, length of longest diagonal is n'/?

*x Ratio of sphere to cube volume is

/2

W , 11 evel
on/2+1.n/2
35, hodd

x Smaller volume reduces costs of approximation; allows one to exploit peri-
odicity
x Smaller volume reduces cost of integration

— If solution has a central tendency, then it rarely visits vertices
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Integration - Gaussian-style formulas

e Integration formulas for one dimension look like

[ 1@ =3 wstw)

/_Z f(a:)e_xzdx = Zi; wi f(x;)

— n point formula
— 2n parameters (points and weights)
— uses n bits of information

— exactly integrates all polynomials of degree 2n — 1.
e Simple approach for higher dimensions:

— Take product of one-dimensional methods:

m

m
2 : 2 : 1,2 d 1 2 d
.« o e wilwig . o e wid (xiﬁ xi27 o« o e 7xid)

11=1 1q=1

— Curse of dimensionality - number of points used is exponential in dimension d



e There are other approaches

— Do not have to use simple Cartesian grids
— Consider X = {(z,y, 2) |z,y,z € {—1,1}}. The rule

4
uses 6 points and exactly integrates all degree 3 polynomials
{17 x? y) Z? :C27 y27 227 :’Cyz7 ajy27 :’C2y7 x'z27 'CI:2Z7 yz27 yQZ}

over [—1,1]°
— More generally, in dimension d you can use 2d points and exactly integrate all
degree 3 polynomials over [—1, 1] with

/[ —wz (ue') + f(—ue)),

where

e'is +1 or — 1 in dimension ?

B d 1/2 _2d—1
““\3) YT

— In general, there are nongrid sets of points that can be used.



e New research direction I: Find rules that are good for many polynomials

— Choose points z; and weights w;, ¢ = 1,..,m, to create a quadrature rule,
Q (f; z,w), to minimize errors.

x The literature is for one-dimensional problems:
00 2
minz (Q (:z:i; z,w) — /xZ d:z:)
g
*x A few mathematicians do this - Gismalla, Cohen, Minka

+ This is not done often since “you can’t publish the results”.



— I created one for a two-D sphere:

*x We need new formulas if we switch to spheres

+ Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared
errors of formula applied to z'y’, i, § < 20.

x Use unconstrained optimization software; use many restarts to avoid local
solution

* Result was

0.2227 (f[—0.8871,0] + f[0, —0.8871] + f]0,0.8871] + f[0.8871,0])
+0.2735 (f[—0.6149, 0.6149] + f[—0.6149, —0.6149]

+£[0.6149, —0.6149] + f[0.6149, 0.61496))
+1.0744 £[—0.3628, 0] + 1.0744£[0, 0.3628]

+1.0744 £]0, —0.3628] + 1.0744.£[0.3628, 0]

with relativized errors of 10(-5) on average and 10(-4) at worst on degree 20
polynomials

x Result had interesting symmetry - 3 groups of 4 points lying on 3 circles -
which gives indication as to what symmetries I should try in higher dimen-
sions.






— General strategy: Look for formulas with small numbers of points to find de-
sirable patterns for point sets, then assume those patterns when searching for
bigger formulas.

— General principal: Use your time to come up with ideas, and use the computer
to do the tedious work.

x Idea here: use formulas that integrate an important set of polynomials.

x Tedious work here: searching for optimal rule that satisfies the criterion.



e New research direction II: Use more information

— Gauss-Turan methods use derivatives

1 n n n
/1 f(z)dr = Zwi,Of(xz’) + Z%‘,lf’(%’) + Zwi,zf”(flfz')
- i=1 i=1 i=1

x n-point formula has 4n parameters, and uses 3n bits of information to inte-
grate first 4n polynomials

x In one dimension, the cost of f and first two derivatives is about same as
three f’s, so no gain in one dimension.



— However, Gauss-Turan has potential for high-dimensional integrals (Judd, 20006)

x The formula

1 1 n
/1 /1 f<x’ y) dz dy:; Wz’,Of(%’, y@)

+ Z (wi,xfa:<xi7 yz) —+ wi,yfy<xi7 yz))

=1
ZTL
+ Z (wi,xxfa:x(xia yz) - wi,azyfa:y<xi7 yz) + Wi,yyfyy(xia yz))
i=1
uses 6n bits of information at n points - one f evaluation and five derivatives
- has 7n parameters and can integrate first 7n polynomials

x Using automatic differentiation, multidimensional Gauss-Turan will beat reg-
ular quadrature rules that use only f values
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Integration - General Sampling Methods

e Sampling methods (including MC) use sequence z; and computes N-point approx-
imation

| e = 53 1) 3)

e There are alternatives called quasi-Monte Carlo methods. Two simple examples
in R? are

/2

Weyl: x" = (np} R ,npi/2) mod 1

Niederreiter: z" = (n oM+l ... p 2d/(d+1)) mod 1
e Convergence for integrals using Weyl or Neiderreiter is N ..

e The debate is which deterministic formulas we should use, not deterministic versus
random.

— MC sequences are designed to look like iid sequences; coincidentally, they do
well at integration

— gqMC sequences are designed to be uniformly distributed and to do well at
integration
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First 1500 Weyl points
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Figure 1. Computed extremal system for n = 64, d,, = 4225.



e Portfolio example

— More relevant for dynamic stochastic general equilibrium than option pricing

examples

— Assumptions
* n assets (iid Uniform), n = 10, 15, 20, 25, 30
x random portfolio with total variance fixed

xu(c) = —e

— Goal: compute expected utility, a n - dimensional integral

/ U (1 -+ Z 9%-) dz
11" i—1



— Methods
x degree 8 Taylor series (exploiting some AD methods): high fixed cost of
computing general formula but application is practically instantaneous
+x Monte Carlo, Weyl, one randomly shifted Weyl
x 10° points
— Results:
x Taylor series: high fixed cost to get general formula but application is prac-
tically instantaneous - shows value of AD and symbolic method for integrals
x Taylor and Weyl were less than two standard errors from MC: MC could not
reject the others
x Weyl was 10-100 times better than MC

*x Performance at n = 30 was same as n = 10.



e Practical facts

— gMC has been used for many high-dimension (e.g., 360) problems in option
pricing problems

— pMC asymptotics kick in early; gMC asymptotics take longer for the qMC
sequences we know

— Therefore, pMC methods have finite sample advantages, not asymptotic advan-
tages.

— “quasi-MC” is bad name since gMC methods have no logical connection to
probability theory



e News:

3/2

— New sequences: randomized (t —m — s) sequences have N~°/¢ convergence -

Owen
— New methods are now producing good qMC rules.

— qMC outperforms MC by factor of 10 in mixed logit discrete-choice models and
simulated maximum likelihood multinormal models - Train, Bhat

— gqMC successes for computing Normal probabilities (x ~ N (0, 1))
Pr [AZIZ < b] y LY N (Om [nxn>

see Sandor-Andras (J. Econometrics, 2004); beats GHK by 10-100 for dimension<
10; by more than 2 for dimension 10-50.

— qMC can do MCMC and Gibbs, and be faster than MC by 10-100 on ordinary
problems

x “Sampling Strategies for MCMC” (November, 2005) Tribble and Owen.
x “A quasi-Monte Carlo Metropolis Algorithm!,” Owen and Tribble, 2005.

e Conjecture: There is a lot of “low hanging fruit” available for econometricians
working on applying qMC to econometrics problems.

'Should be called Metropolis - Rosenbluth - Rosenbluth - Teller - Teller method.

25
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Methodology: Pure Math versus Experimental Math

e MC methods as practiced is very useful and sound but not supported by usual
mathematical theorems. Real proof is

— Suppose f (z) = > 7 a;x" on [0,1] and ;7 .- a;x" is negligible for some

— Suppose computations show that a sequence X; properly computes [ r'dx at
rate N~Y2 for each i < K.

— Then, MC will compute [ f (x) at rate N~1/2

e This is experimental mathematics NOT probability theory!

e Experimental math:

— Test out conjecture on many cases to explore validity

— Combine computational results with pure math to arrive at conclusions with
known range of validity

— Computational results may inspire theorems, such as Neiderreiter analysis of
LCM.



e Problem is not with using MC, but with understanding logical underpinnings.

— MC in practice is not based on probability theory
— It is inspired by probability theory, but theorems do not apply

— This inspiration led to search for pMC sequences which, by testing, were found
to do a good job on some problems

e Why are these logical points important?

— All agree that Monte Carlo is a very important and useful tool.

— Recognition of the true foundation for MC will encourage us to develop other
methods based on a similarly disciplined combination of analysis and compu-
tational experimentation.



Modelling Suggestion I: Use Continuous Time

e We pay a high price when we choose discrete-time formulations
e Dynamic programming: “next period’s value”

— Discrete-time: V (F (z,U (z))) - double composition
— Continuous-time: V' (z) F'(z,U (z)) - single composition plus multiplication
and gradient

— Stochastic discrete time: E{V (F (z:, U (x¢)),0:11) |0¢} - double composition
plus multidimensional integral

— Stochastic continuous time: V' (x) F (x, U (x)) +0*V" (x) - single composition,
multiplication, gradient, and Hessian

— Composition of unknown functions (V' and U) is far costlier than derivatives
for both perturbation and projection methods

e Stochastic games: Doraszelski-Judd show that continuous-time games are orders
of magnitude faster than discrete-time games.



Modelling Suggestion II: Use Finite-Dimensional States

e Many economists have problems with infinite-dimensional states, such as the dis-
tribution of income

e Alternative approach: There is only a finite number of people

e Example: suppose you have dynamic programming problem with [V factories, each
with DRTS, with adjustment costs for investment.

— Bellman equation
% (k):m]axu (¢)+ BV (k+ 1)
c=%f (ki) — Zig" (I' (k))
— Equations defining V' (k) and I (k):

V (k) <>+6V(k+l<k>)
0=—u'(c) (1 +al’ (k) + Vi (k + I (k)

— Idea: Use perturbation method to compute Taylor series for V (k) and the
I' (k)



— Problemns:

x Vj is a vector of length N; Vj; is a matrix with N* elements;
+ I' (k) is a list of N functions; I} (k) is an N x N matrix; I}, (k) is N x N x N

9 gm
tensor, etc.

« If N = 10°, that is a lot of unknowns
— Solution: Exploit symmetry at steady state
* Vi=V;, Vi, j
* Vig = Vi1, Vi Vij = Vig, Vi #
* Vi = Vi, Vi Vig = Vine, Viji = Viao, Vi # 35 Vigm = Vigg, Vi # j # m # i
x Similarly for I* functions

— High-order Taylor series are feasible

x The number of unknowns when computing ¢’th derivative is 2¢ independent

x Solutions depend on N; take N — oo to find infinite population solution

x Risk - idiosyncratic and aggregate - can be added with little extra computa-
tional cost.

— Similar to Gaspar-Judd (1997) and Krusell-Smith (1997) uses of symmetry, but
far more efficient



Modelling Suggestion I1I: Get Rid of Kinks

e General observation: the more smoothness, the better for computation.
e Fconomists love to put in discontinuities.
e Hubbard (1986) example (why not pick on a Republican big shot business school
dean?)
— Wanted to examine tax policy implications of borrowing constraints.
— Assumed one could not borrow against future wages; equivalent to

r, W >0
T(W){OOW<O

or, equivalently,

u(c), W >0
u(C’W){—(olW<O
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— Is this economically reasonable? Borrowing is not infinitely painful

x First, go to parents.
x Second, run up credit card debt.
x In general, there is a set of sources of credit, with rising interest rates

« Empirical fact: people do have debt!
— Results were interesting, but hampered by computational inefficiencies

x Used a slow method to deal with endogenous age at which one is constrained.

x Taxing capital income may be a good idea if it reduces wage taxation and
liquidity constraint of borrowing constrained people.

e General point: kinks and discontinuities create problems but there are few prob-
lems where nonsmooth functions are necessary

1B
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e Citation: R.Glenn Hubbard and Kenneth L. Judd, “Liquidity Constraints, Fiscal
Policy, and Consumption,” Brookings Papers on Economic Activity, 1986: 1.



The Future: Computing Speed

e We need more speed to do the necessary heavy lifting - searches for good methods,
symbolic manipulation, experimental mathematics - implicit in the ideas men-
tioned above.

e More speed is coming.



MIPS per $1000 (1997 Dollars)

Million
1000 Gateway GE-200
PowerMac 8100/80
Gateway-4850X2/66
Mac |l
Power Tower 180
Macintosh-128K
T Glo 00
1 Commodore 64 ATAT Globalyst &
IBM PC ) 1BM PS/2 90
Apple I Sun-2
DG Eclipsa Mac Iitx
L)
CDLC 7600 o 9 Sun-3
[}
DEC PDP-10 ° /”.o~
1 IBM 7080 1BM 1130 a2 Vax 11/750
1000 Whirlwind ° o. .. DEC VAX 11/780
1BM 704 . o ,‘ ° DEC-KL-10
UNIVAC | ° DG Nova
ENIAG 7 e
| LY 1BM 380/75
1 Colossus . @ ° IBM 7040
Million / Burroughs 5000
IBM 1620
Burroughs Class 16 / / 1BM 850
LY
1 IBM Tabulator T Zu-e 1 ..

Bllllon Monroe Calculator { @
o
8 G

o o
1900 1920 1940 1960 1980 2000 2

ASCC (Mark 1)


http://www.transhumanist.com/volume1/appendix.htm

The Future: Griebel-Wozniakowski Theorem

e Question: Are there good rules out there to defeat the curse of dimensionality?
We want assurances before we begin this search.

e Answer: Yes, if we formulate problem in reasonable spaces.

e "On the Optimal Convergence Rate of Universal and Non-Universal Algorithms
for Multivariate Integrationand Approximation” by Griebel and Wozniakowski

— Consider functions that belong to reproducing kernel Hilbert spaces.

x Without loss of generality it is enough to consider linear algorithms.
x The best algorithms for approximation and integration that works for all
RKHS displays a curse of dimensionality.

+ For any given RKHS, the optimal rate of convergence is at least 1/2 for
multivariate integration 1/4 for multivariate approximation.



x If the kernel is a product of univariate kernels, i.e.,

[0,1] [0,1] [0,1] 01

then the optimal algorithm converges at the same rate as the slowest op-
timal algorithm across the univariate kernels. Hence, the optimal rate of
convergence of universal algorithms for product kernels does not depend in
dimension!

— Proof is nonconstructive, but tells us that computer searches are not necessarily
futile.

e Flconomics problems are generally integrals of smooth functions over products of
smooth univariate kernels as long as we stay away from kinks.



The Future: Quantum Computing

New technology may also break curse of dimensionality

e Quantum computer example

— Load quantum computer with a function f and a number n.

— ZAP it and it becomes n computers (more precisely, the quantum state of the
computer will be a superposition of the n possible states) where computer 7
computes f (i),i=1,..,n

— ZAP it n=1/2 times

— Take a random draw among the n computers before they collapse back to one,
but sample is now biased so that you get max f (7) with probability 1 — n~!!



e (Quantum complexity theory

— Examines possible efficiency of quantum computer algorithms.
— There are examples of where quantum breaks curse of dimensionlity.
— “Path Integration on a Quantum Computer,” Traub and Wozniakowski (2001).

+ Path integration on a quantum computer is tractable.

+ Path integration on a quantum computer can be solved roughly 7! times
faster than on a classical computer using randomization, and

x exponentially faster than on a classical computer with a worst case assurance.

x The number of quantum queries is the square root of the number of function
values needed on a classical computer using randomization.

e In general, integration is faster on a quantum computer than a classical computer
- Brassard-Hoya-Mosca-Tapp.



Conclusion

e If you formulate models in the right way, and If you use best available math, then
you can avoid the curse of dimensionality

e New developments are making that easier to do.

e The path is clear, but there is a lot of work to do to build the road.





