PERTURBATION METHODS

Kenneth L. Judd
Hoover Institution and NBER

June 28, 2006
Local Approximation Methods

- Use information about $f : R \to R$ only at a point, $x_0 \in R$, to construct an approximation valid near x_0.

- Taylor Series Approximation

\[
f(x) \approx f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \cdots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + O(|x - x_0|^{n+1})
\]

\[= p_n(x) + O(|x - x_0|^{n+1})\]

- Power series: $\sum_{n=0}^{\infty} a_n z^n$

 - The radius of convergence is

\[r = \sup\{|z| : \sum_{n=0}^{\infty} a_n z^n < \infty\},\]

 - $\sum_{n=0}^{\infty} a_n z^n$ converges for all $|z| < r$ and diverges for all $|z| > r$.

- Complex analysis

 - $f : \Omega \subset C \to C$ on the complex plane C is analytic on Ω iff

\[\forall a \in \Omega \ \exists r, c_k \left(\forall ||z - a|| < r \left(f(z) = \sum_{k=0}^{\infty} c_k(z - a)^k \right) \right)\]

 - A singularity of f is any a s. t. f is analytic on $\Omega - \{a\}$ but not on Ω.

 - If f or any derivative of f has a singularity at $z \in C$, then the radius of convergence in C of

\[\sum_{n=0}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0),\]

is bounded above by $||x_0 - z||$.
• Example: \(f(x) = x^\alpha \) where \(0 < \alpha < 1 \).

 – One singularity at \(x = 0 \)
 – Radius of convergence for power series around \(x = 1 \) is 1.
 – Taylor series coefficients decline slowly:

\[
a_k = \frac{1}{k!} \frac{d^k}{dx^k} (x^\alpha)|_{x=1} = \frac{\alpha(\alpha-1) \cdots (\alpha-k+1)}{1 \cdot 2 \cdots k}.
\]

Table 6.1 (corrected): Taylor Series Approximation Errors for \(x^{1/4} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>N: 5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>5((-1))</td>
<td>8(1)</td>
<td>3(3)</td>
<td>1(12)</td>
</tr>
<tr>
<td>2.0</td>
<td>1((-2))</td>
<td>5((-3))</td>
<td>2((-3))</td>
<td>8((-4))</td>
</tr>
<tr>
<td>1.8</td>
<td>4((-3))</td>
<td>5((-4))</td>
<td>2((-4))</td>
<td>9((-9))</td>
</tr>
<tr>
<td>1.5</td>
<td>2((-4))</td>
<td>3((-6))</td>
<td>1((-9))</td>
<td>0((-12))</td>
</tr>
<tr>
<td>1.2</td>
<td>1((-6))</td>
<td>2((-10))</td>
<td>0((-12))</td>
<td>0((-12))</td>
</tr>
<tr>
<td>.80</td>
<td>2((-6))</td>
<td>3((-10))</td>
<td>0((-12))</td>
<td>0((-12))</td>
</tr>
<tr>
<td>.50</td>
<td>6((-4))</td>
<td>9((-6))</td>
<td>4((-9))</td>
<td>0((-12))</td>
</tr>
<tr>
<td>.25</td>
<td>1((-2))</td>
<td>1((-3))</td>
<td>4((-5))</td>
<td>3((-9))</td>
</tr>
<tr>
<td>.10</td>
<td>6((-2))</td>
<td>2((-2))</td>
<td>4((-3))</td>
<td>6((-5))</td>
</tr>
<tr>
<td>.05</td>
<td>1((-1))</td>
<td>5((-2))</td>
<td>2((-2))</td>
<td>2((-3))</td>
</tr>
</tbody>
</table>
Log-Linearization and General Nonlinear COV

- Implicit differentiation implies

\[\dot{x} = \frac{dx}{x} = -\frac{\varepsilon f_{\varepsilon}}{x f_x} \varepsilon = -\frac{\varepsilon f_{\varepsilon}}{x f_x} \varepsilon, \]

- Since \(\dot{x} = d(\ln x) \), log-linearization implies log-linear approximation

\[\ln x - \ln x_0 = -\frac{\varepsilon_0 f_{\varepsilon}(x_0, \varepsilon_0)}{x_0 f_x(x_0, \varepsilon_0)}(\ln \varepsilon - \ln \varepsilon_0). \] \hspace{1cm} (6.1.5)

- Generalization to nonlinear change of variables.

 - Take any monotonic \(h(\cdot) \), and define \(x = h(X) \) and \(y = h(Y) \)
 - Use the identity

\[f(Y, X) = f(h^{-1}(h(Y)), h^{-1}(h(X))) = f(h^{-1}(y), h^{-1}(x)) \equiv g(y, x). \]

 to generate expansions

\[y(x) = y(x_0) + y'(x)(x - x_0) + \ldots \]

\[Y(X) = h^{-1}\left(y(h(X_0)) + y'(h(X_0))(h(X) - h(X_0)) \right) + \ldots \]

- \(h(z) = \ln z \) is commonly used by economists, but others may be better globally
Implicit Function Theorem

• Suppose $h : \mathbb{R}^n \to \mathbb{R}^m$ is defined in $H(x, h(x)) = 0$, $H : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, and $h(x_0) = y_0$.

 - Implicit differentiation shows
 $$H_x(x, h(x)) + H_y(x, h(x))h_x(x) = 0$$

 - At $x = x_0$, this implies
 $$h_x(x_0) = -H_y(x_0, y_0)^{-1}H_x(x_0, y_0)$$

 if $H_y(x_0, y_0)$ is nonsingular. More simply, we express this as
 $$h^0_x = -(H^0_y)^{-1}H^0_x$$

 - Linear approximation for $h(x)$ is
 $$h^L(x) = h(x_0) + h_x(x_0)(x - x_0)$$

• To check on quality, we compute
 $$E = \hat{H}(x, h^L(x))$$

 where \hat{H} is a unit free equivalent of H. If $E \leq \varepsilon$, then we have an ε-solution.
- If \(h^L(y) \) is not satisfactory, compute higher-order terms by repeated differentiation.

 \[\frac{D_{xx} H(x, h(x))}{0} \] implies

 \[
 H_{xx} + 2H_{xy}h_x + H_{yy}h_xh_x + H_yh_{xx} = 0
 \]

- At \(x = x_0 \), this implies

 \[
 h_{xx}^0 = -\left(H_y^0\right)^{-1} (H_{xx}^0 + 2H_{xy}^0h_x^0 + H_{yy}^0h_x^0h_x^0)
 \]

- Construct the quadratic approximation

 \[
 h^Q(x) \doteq h(x_0) + h_x^0(x - x_0) + \frac{1}{2}(x - x_0)^\top h_{xx}^0(x - x_0)
 \]

 and check its quality by computing \(E = H(x, h^Q(x)) \).
Regular Perturbation: The Basic Idea

- Suppose x is an endogenous variable, ε a parameter
 - Want to find $x(\varepsilon)$ such that $f(x(\varepsilon), \varepsilon) = 0$
 - Suppose $x(0)$ known.

- Use Implicit Function Theorem
 - Apply implicit differentiation:
 $$f_x(x(\varepsilon), \varepsilon)x'(\varepsilon) + f_\varepsilon(x(\varepsilon), \varepsilon) = 0$$
 (13.1.5)
 - At $\varepsilon = 0$, $x(0)$ is known and (13.1.5) is linear in $x'(0)$ with solution
 $$x'(0) = -f_x(x(0), 0)^{-1}f_\varepsilon(x(0), 0)$$
 - Well-defined only if $f_x \neq 0$, a condition which can be checked at $x = x(0)$.
 - The linear approximation of $x(\varepsilon)$ for ε near zero is
 $$x(\varepsilon) \doteq x^L(\varepsilon) \equiv x(0) - f_x(x(0), 0)^{-1}f_\varepsilon(x(0), 0)\varepsilon$$
 (13.1.6)
• Can continue for higher-order derivatives of $x(\varepsilon)$.

 - Differentiate (13.1.5) w.r.t. ε

 \[f_{xx}x'' + f_{xx}(x')^2 + 2f_{x\varepsilon}x' + f_{\varepsilon\varepsilon} = 0 \]

 (13.1.7)

 - At $\varepsilon = 0$, (13.1.7) implies that

 \[x''(0) = -f_x(x(0), 0)^{-1} (f_{xx}(x(0), 0) (x'(0))^2 \]
 \[+ 2f_{x\varepsilon}(x(0), 0) x'(0) + f_{\varepsilon\varepsilon}(x(0), 0)) \]

 - Quadratic approximation is

 \[x(\varepsilon) \approx x^Q(\varepsilon) \equiv x(0) + \varepsilon x'(0) + \frac{1}{2} \varepsilon^2 x''(0) \]

 (13.1.8)
• General Perturbation Strategy

- Find special (likely degenerate, uninteresting) case where one knows solution
 * General relativity theory: begin with case of a universe with zero mass: ε is mass of universe
 * Quantum mechanics: begin with case where electrons do not repel each other: ε is force of repulsion
 * Business cycle analysis: begin with case where there are no shocks: ε is measure of exogenous shocks

- Use local approximation theory to compute nearby cases
 * Standard implicit function may be applicable
 * Sometimes standard implicit function theorem will not apply; use appropriate bifurcation or singularity method.

- Check to see if solution is good for problem of interest
 * Use unit-free formulation of problem
 * Go to higher-order terms until error is reduced to acceptable level
 * Always check solution for range of validity
Single-Sector, Deterministic Growth - canonical problem

- Consider dynamic programming problem

\[
\max_{c(t)} \int_{0}^{\infty} e^{-\rho t} u(c) dt
\]

\[
\dot{k} = f(k) - c
\]

- Ad-Hoc Method: Convert to a wrong LQ problem

 - McGrattan, JBES (1990)
 * Replace \(u(c) \) and \(f(k) \) with approximations around \(c^* \) and \(k^* \)
 * Solve linear-quadratic problem

\[
\max_{c} \int_{0}^{\infty} e^{-\rho t} \left(u(c^*) + u'(c^*)(c - c^*) + \frac{1}{2}u''(c^*)(c - c^*)^2 \right) dt
\]

s.t. \(\dot{k} = f(k^*) + f'(k^*)(k^* - k) - c \)

 * Resulting approximate policy function is

\[
C^{McG}(k) = f(k^*) + \rho(k - k^*) \neq C(k^*) + C'(k^*)(k - k^*)
\]

 * Local approximate law of motion is \(\dot{k} = 0 \); add noise to get

\[
dk = 0 \cdot dt + dz
\]

 * Approximation is random walk when theory says solution is stationary

• Kydland-Prescott
 – Restate problem so that \(\dot{k} \) is linear function of state and controls
 – Replace \(u(c) \) with quadratic approximation
 – Note 1: such transformation may not be easy
 – Note 2: special case of Magill (JET 1977).

• Lesson
 – Kydland-Prescott, McGrattan provide no mathematical basis for method
 – Formal calculations based on appropriate IFT should be used.
 – Beware of \textit{ad hoc} methods based on an intuitive story!
Perturbation Method for Dynamic Programming

- Formalize problem as a system of functional equations

 - Bellman equation:
 \[\rho V(k) = \max_c u(c) + V'(k)(f(k) - c) \] (1)

 - \(C(k)\): policy function defined by
 \[0 = u'(C(k)) - V'(k) \] (2)
 \[\rho V(k) = u(C(k)) + V'(k)(f(k) - C(k)) \]

 - Apply envelope theorem to (1) to get
 \[\rho V'(k) = V''(k)(f(k) - C(k)) + V'(k)f'(k) \] (1k)

 - Steady-state equations
 \[c^* = f(k^*) \quad \quad \quad \rho V(k^*) = u(c^*) + V'(k^*)(f(k^*) - c^*) \]
 \[0 = u'(c^*) - V'(k^*) \quad \rho V'(k) = V''(k)(f(k) - c^*) + V'(k)f'(k) \]

 - Steady State: We know \(k^*, V(k^*), C(k^*), f'(k^*), V'(k^*)\):
 \[\rho = f'(k^*), \quad C(k^*) = f(k^*), \quad V(k^*) = \rho^{-1}u(c^*), \quad V'(k^*) = u'(c^*) \]

 - Want Taylor expansion:
 \[C(k) = C(k^*) + C'(k^*)(k - k^*) + C''(k^*)(k - k^*)^2/2 + ... \]
 \[V(k) = V(k^*) + V'(k^*)(k - k^*) + V''(k^*)(k - k^*)^2/2 + ... \]
Linear approximation around a steady state

- Differentiate \((1_k, 2)\) w.r.t. \(k\):

\[
\rho V'' = V'''(f - C') + V''(f' - C''(k)) + V''f' + V'f''
\]

\[
0 = u''C' = V''
\]

- At the steady state

\[
0 = -V''(k^*)C''(k^*) + V''(k^*)f'(k^*) + V'(k^*)f''(k^*)
\]

- Substituting \((2_k)\) into \((1_k)\) yields

\[
0 = -u''(C'')^2 + u''C'f' + V'f''
\]

- Two solutions

\[
C''(k^*) = \frac{\rho}{2} \left(1 \pm \sqrt{1 + \frac{4u'(C'(k^*))f'''(k^*)}{u''(C''(k^*))f'(k^*)f''(k^*)}}\right)
\]

- However, we know \(C''(k^*) > 0\); hence, take positive solution
Higher-Order Expansions

- Conventional perception in macroeconomics: “perturbation methods of order higher than one are considerably more complicated than the traditional linear-quadratic case ...” – Marcet (1994, p. 111)
- Mathematics literature: No problem (See, e.g., Bensoussan, Fleming, Souganides, etc.)

Compute \(C''(k^*) \) and \(V'''(k^*) \).

- Differentiate \((1_{kk}, 2_k)\):

\[
\rho V''' = V'''(f - C) + 2V'''(f' - C') + V''(f'' - C'') + V''' f' + 2V'' f'' + V' f'''
\]

\[
0 = u'''(C')^2 + u'' C'' - V'''
\]

- At \(k^* \), \((1_{kkk})\) reduces to

\[
0 = 2V'''(f' - C') + 3V'' f'' - V'' C'' + V' f'''
\]

- Equations \((1_{kkk}; 2_{kk})\) are LINEAR in unknowns \(C''(k^*) \) and \(V'''(k^*) \):

\[
\begin{pmatrix}
 u'' & -1 \\
 V'' - 2(f' - C')
\end{pmatrix}
\begin{pmatrix}
 C'' \\
 V'''
\end{pmatrix}
= \begin{pmatrix}
 A_1 \\
 A_2
\end{pmatrix}
\]

- Unique solution since determinant \(-2u''(f' - C') + V'' < 0\).
• Compute $C^{(n)}(k^*)$ and $V^{(n+1)}(k^*)$.

 – Linear system for order n is, for some A_1 and A_2,

 $$
 \begin{pmatrix}
 u'' & -1 \\
 V'' - n(f' - C')
 \end{pmatrix}
 \begin{pmatrix}
 C^{(n)} \\
 V^{(n+1)}
 \end{pmatrix}
 =
 \begin{pmatrix}
 A_1 \\
 A_2
 \end{pmatrix}
 $$

 – Higher-order terms are produced by solving linear systems

 – The linear system is always determinate since $-nu''(f' - C') + V'' < 0$

• Conclusion:

 – Computing first-order terms involves solving quadratic equations

 – Computing higher-order terms involves solving linear equations

 – Computing higher-order terms is easier than computing the linear term.
Accuracy Measure
Consider the one-period relative Euler equation error:

\[E(k) = 1 - \frac{V'(k)}{u'(C(k))} \]

- Equilibrium requires it to be zero.
- \(E(k) \) is measure of optimization error
 - 1 is unacceptably large
 - Values such as .00001 is a limit for people.
 - \(E(k) \) is unit-free.
- Define the \(L^p, 1 \leq p < \infty \), bounded rationality accuracy to be
 \[\log_{10} \| E(k) \|_p \]
- The \(L^\infty \) error is the maximum value of \(E(k) \).
Global Quality of Asymptotic Approximations

- Linear approximation is very poor even for \(k \) close to steady state
- Order 2 is better but still not acceptable for even \(k = .9, 1.1 \)
- Order 10 is excellent for \(k \in [.6, 1.4] \)
Stochastic, Discrete-Time Growth

\[
\max_{c_t} \quad E \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\} \\
\text{s.t.} \quad k_{t+1} = (1 + \varepsilon z) F(k_t - c_t)
\]

(13.7.19)

• New state variable:

 – \(k_t\) is capital stock at the beginning of period \(t\)

 – consumption comes out of \(k\)

 – the remaining capital, \(k_t - c_t\), is used in production

 – resulting output is \((1 + \varepsilon z) F(k_t - c_t) = k_{t+1}\)

 – perturbation parameter is \(\varepsilon\), the standard deviation, not the variance.

• Do deterministic perturbation analysis.

 – Solution when \(\varepsilon = 0\) is \(C(k)\) solving

\[
u'(C(k)) = \beta u'(C(F(k - C(k)))) F'(k - C(k)).
\]

(13.7.20)

 – At the steady state, \(k^*\), \(F(k^* - C(k^*)) = k^*\), and \(1 = \beta F'(k^* - C(k^*))\)

 – Derivative of (13.7.20) with respect to \(k\) implies

\[
u''(C(k)) C''(k) = \beta u''(C(F(k - C(k)))) C''(F(k - C(k)))
\times F'(k - C(k)) [1 - C'(k)] F'(k - C(k))
+ \beta u'(C(F(k - C(k)))) F''(k - C(k)) [1 - C''(k)]
\]

(13.7.21)
At \(k = k^* \), (13.7.21) reduces to (drop all arguments)

\[
 u''C' = \beta u''C' F'[1 - C'] F' + \beta u' F''[1 - C'].
\]

(13.7.22)

with stable solution

\[
 C' = \frac{1}{2} \left(1 - \beta - \beta^2 \frac{u'}{u''} F'' + \sqrt{\left(1 - \beta - \beta^2 \frac{u'}{u''} F'' \right)^2 + 4 \frac{u'}{u''} \beta^2 F''} \right)
\]

Take another derivative of (13.7.21) and set \(k = k^* \) to find

\[
 u''C'' + u'''C'C' = \beta u''' \left(C' F'(1 - C') \right)^2 F' + \beta u''C'' \left(F'(1 - C') \right)^2 F' \\
 + 2\beta u''C' F'(1 - C')^2 F'' + \beta u' F'''(1 - C')^2 \\
 + \beta u' F''(-C''),
\]

which is a linear equation in the unknown \(C'''(k^*) \).
• Stochastic problem:

- Euler equation is

\[u' (C(k)) = \beta E \{ u' (g(\varepsilon, k, z)) \cdot R(\varepsilon, k, z) \}, \]

(13.7.23)

where

\[g(\varepsilon, k, z) \equiv C((1 + \varepsilon z)F(k - C(k))), \]

(13.7.24)

\[R(\varepsilon, k, z) \equiv (1 + \varepsilon z)F'(k - C(k)). \]

- Compute \(C_\varepsilon \)

* Differentiate (13.7.24) with respect to \(\varepsilon \) yields (we drop arguments of \(F \) and \(C \))

\[g_\varepsilon = C_\varepsilon + C'' (zF - (1 + \varepsilon z)F'C_\varepsilon), \]

(13.7.25)

\[g_{\varepsilon\varepsilon} = C_{\varepsilon\varepsilon} + 2C'_\varepsilon (zF - (1 + \varepsilon z)F'C_\varepsilon) + C''' (zF - (1 + \varepsilon z)F'C_\varepsilon)^2, \]

\[+ C'' (-2F' C_\varepsilon + F'' C_\varepsilon^2 - (1 + \varepsilon z) F'C_{\varepsilon\varepsilon}). \]

* At \(\varepsilon = 0 \), (13.7.25) implies that

\[g_\varepsilon = C_\varepsilon + C''(zF - F'C_\varepsilon), \]

(13.7.26)

\[g_{\varepsilon\varepsilon} = C_{\varepsilon\varepsilon} + 2C'_\varepsilon (zF - F'C_\varepsilon) + C''' (zF - F'C_\varepsilon)^2, \]

\[+ C''(-2F' C_\varepsilon + F'' C_\varepsilon^2 - F'C_{\varepsilon\varepsilon}). \]
* Differentiate (13.7.23) with respect to \(\varepsilon \)

\[
\frac{d^2}{d\varepsilon^2} u_{00} C_{\varepsilon} = \beta \mathbb{E} \left\{ \frac{d^2}{d\varepsilon^2} g_{\varepsilon} (1 + \varepsilon z) F' + u' F' z - u'(1 + \varepsilon z) \frac{d^2}{d\varepsilon^2} C_{\varepsilon} \right\} \tag{13.7.27}
\]

\[
\frac{d^3}{d\varepsilon^3} u_{00} C_{\varepsilon}^2 + \frac{d^3}{d\varepsilon^3} u_{00} C_{\varepsilon\varepsilon} = \beta \mathbb{E} \left\{ \frac{d^3}{d\varepsilon^3} g_{\varepsilon}^2 (1 + \varepsilon z) F' + 2u'' g_{\varepsilon} F' z - 2u'' g_{\varepsilon} F' z - 2u' z F'' C_{\varepsilon} + u'(1 + \varepsilon z) F'' C_{\varepsilon}^2 - u'(1 + \varepsilon z) F'' C_{\varepsilon\varepsilon} \right\} \tag{13.7.28}
\]

* Since \(\mathbb{E}\{z\} = 0 \), (13.7.27) says that \(C_{\varepsilon} = 0 \), which in turn implies that

\[
g_{\varepsilon} = C' z F,
\]

\[
g_{\varepsilon\varepsilon} = C_{\varepsilon\varepsilon} + 2C_{\varepsilon} C' z F + C'' (z F)^2 - C' F' C_{\varepsilon\varepsilon}.
\]

- Compute \(C_{\varepsilon\varepsilon} \)

* Second-order terms in (13.7.28), we find that at \(\varepsilon = 0 \),

\[
\frac{d^3}{d\varepsilon^3} u_{00} C_{\varepsilon}^2 + \frac{d^3}{d\varepsilon^3} u_{00} C_{\varepsilon\varepsilon} = \beta \mathbb{E} \left\{ \frac{d^3}{d\varepsilon^3} g_{\varepsilon}^2 F' + 2u'' g_{\varepsilon} F' z - 2u'' g_{\varepsilon} F' z + u'' g_{\varepsilon} F' - 2u' z F'' C_{\varepsilon} + u' F'' C_{\varepsilon}^2 - u' F'' C_{\varepsilon\varepsilon} \right\}
\]

* Using the normalization \(\mathbb{E}\{z^2\} = 1 \), we find that

\[
\frac{d^2}{d\varepsilon^2} u_{00} C_{\varepsilon\varepsilon} = \beta \left[\frac{d^3}{d\varepsilon^3} C' C' F^2 F' + 2u'' C' F F' + u'' (C_{\varepsilon\varepsilon} + C'' F^2 - C' F' C_{\varepsilon\varepsilon}) F' - u' F'' C_{\varepsilon\varepsilon} \right]
\]

* Solving for \(C_{\varepsilon\varepsilon} \) yields

\[
C_{\varepsilon\varepsilon} = \frac{\frac{d^2}{d\varepsilon^2} C' C' F^2 + 2u'' C' F + u'' C'' F^2}{\frac{d^2}{d\varepsilon^2} C' F' + \beta u' F''}
\]

- This exercise demonstrates that perturbation methods can also be applied to the discrete-time stochastic growth model.
Bifurcation Methods

- Suppose $H(h(\varepsilon), \varepsilon) = 0$ but $H(x, 0) = 0$ for all x.

 - IFT says

 $$h'(0) = -\frac{H_\varepsilon(x_0, 0)}{H_x(x_0, 0)}$$

 - $H(x, 0) = 0$ implies $H_x(x_0, 0) = 0$, and $h'(0)$ has the form $0/0$ at $x = x_0$.

 - l’Hospital’s rule implies, if which is well-defined if $H_{\varepsilon x}(x_0, 0) \neq 0$,

 $$h'(0) = -\frac{H_{\varepsilon\varepsilon}(x_0, 0)}{H_{\varepsilon x}(x_0, 0)}.$$
Example: Portfolio Choices for Small Risks

• Simple asset demand model:

 – safe asset yields R per dollar invested and risky asset yields Z per dollar invested

 – If final value is $Y = W((1 - \omega)R + \omega Z)$, then portfolio problem is
 \[
 \max_{\omega} E\{u(Y)\}
 \]

• Small Risk Analysis

 – Parameterize cases
 \[
 Z = R + \varepsilon z + \varepsilon^2 \pi
 \] (1)

 – Compute $\omega(\varepsilon) = \omega(0) + \varepsilon \omega'(0) + \frac{\varepsilon^2}{2} \omega''(0)$ around the deterministic case of $\varepsilon = 0$.

 – Failure of IFT: at $\varepsilon = 0$, $Z = R$, and $\omega(\varepsilon)$ is indeterminate, but we know that $\omega(\varepsilon)$ is unique for $\varepsilon \neq 0$
• Bifurcation analysis

- The first-order condition for ω

\[
0 = E\{u' (WR + \omega W (\varepsilon z + \varepsilon^2 \pi)) (z + \varepsilon \pi)\} \equiv G(\omega, \varepsilon) \tag{2}
\]

\[
0 = G(\omega, 0), \quad \forall \omega. \tag{3}
\]

- Solve for $\omega(\varepsilon) = \omega(0) + \varepsilon \omega'(0) + \frac{\varepsilon^2}{2} \omega''(0)$. Implicit differentiation implies

\[
0 = G_\omega \omega' + G_\varepsilon \tag{4}
\]

\[
G_\varepsilon = E\{u''(Y)W(\omega z + 2\omega \varepsilon \pi)W(z + \varepsilon \pi) + u'(Y)\pi\} \tag{5}
\]

\[
G_\omega = E\{u''(Y)(z + \varepsilon \pi)^2 \varepsilon\} \tag{6}
\]

- At $\varepsilon = 0$, $G(\omega, 0) = G_\omega(\omega, 0) = 0$ for all ω.

- No point $(\omega, 0)$ for application of IFT to (3) to solve for $\omega'(0)$.
• We want $\omega_0 = \lim_{\varepsilon \to 0} \omega(\varepsilon)$.

 - Bifurcation theorem keys on ω_0 satisfying

 \[
 0 = G'_\varepsilon(\omega_0, 0) \\
 = u''(RW)\omega_0 \sigma^2_z W + u'(RW) \pi
 \]

 which implies

 \[
 \omega_0 = -\frac{\pi}{\sigma^2_z \frac{u'(WR)}{W u''(WR)}}
 \]

 - (8) is asymptotic portfolio rule

 * same as mean-variance rule
 * ω_0 is product of risk tolerance and the risk premium per unit variance.
 * ω_0 is the limiting portfolio share as the variance vanishes.
 * ω_0 is not first-order approximation.
To calculate $\omega'(0)$:

- Differentiate (2.4) with respect to ε

$$0 = G_{\omega\omega}\omega' + 2G_{\omega\varepsilon}\omega' + G_{\omega}\omega'' + G_{\varepsilon\varepsilon}$$ \hspace{1cm} (9)

where (without loss of generality, we assume $W = 1$)

$$G_{\varepsilon\varepsilon} = E\{u'''(Y)(\omega z + 2\omega\varepsilon\pi)^2(z + \varepsilon\pi) + u''(Y)2\omega\pi(z + \varepsilon\pi)$$
$$+ 2u''(Y)(\omega z + 2\omega\varepsilon\pi)\pi\}$$

$$G_{\omega\omega} = E\{u'''(Y)(z + \varepsilon\pi)^3\varepsilon\}$$

$$G_{\omega\varepsilon} = E\{u'''(Y)(\omega z + 2\omega\varepsilon\pi)(z + \varepsilon\pi)^2\varepsilon + u''(Y)(z + \varepsilon\pi)2\pi\varepsilon$$
$$+ u''(Y)(z + \varepsilon\pi)^2\}$$

- At $\varepsilon = 0$,

$$G_{\varepsilon\varepsilon} = u'''(R)\omega_0^2E\{z^3\} \quad G_{\omega\omega} = 0$$
$$G_{\omega\varepsilon} = u''(R)E\{z^2\} \neq 0 \quad G_{\varepsilon\varepsilon} \neq 0$$

- Therefore,

$$\omega' = -\frac{1}{2} \frac{u'''(R)E\{z^3\}}{u''(R)E\{z^2\}} \omega_0^2.$$ \hspace{1cm} (10)

- Equation (10) is a simple formula.

 * $\omega'(0)$ proportional to u'''/u''
 * $\omega'(0)$ proportional to ratio of skewness to variance.
 * If u is quadratic or z is symmetric, ω does not change to a first order.

- We could continue this and compute more derivatives of $\omega(\varepsilon)$ as long as u is sufficiently differentiable.
Other applications - see Judd and Guu (ET, 2001)

- Equilibrium: add other agents, make π endogenous
- Add assets
- Produce a mean-variance-skewness-kurtosis-etc. theory of asset markets
- More intuitive approach to market incompleteness then counting states and assets