Estimation of Static and Dynamic Models of Strategic Interactions

Han Hong

Department of Economics
Duke University

Presentation at ICE 06, Chicago, July, 2006
This talk is based on the following papers

Motivation

1. Empirical analysis of games in econometrics and industrial organization.
2. Discrete choice model with other agent’s actions entering as a right hand side variable.
3. Often most straight forward to estimate a game in two steps.
4. In a first step, the economist estimates the reduced forms implied by the model.
5. In the second step, recover structural utility parameters that rationalize the observed reduced forms.
Literature

- Early examples, Vuong and Bjorn (1984) and Bresnahan and Reiss (1990, 1991).
- Single agent dynamic models: Rust (1987), Hotz and Miller (1993), Magnac and Thesmar (2003), Heckman and Navarro (2005), among many others.
Static Model

- Players, \(i = 1, \ldots, n \) and actions \(a_i \in \{0, 1, \ldots, K\} \) out of a finite set.
- Let \(A = \{0, 1, \ldots, K\}^n \) and \(a = (a_1, \ldots, a_n) \).
- Abstract from mixed strategies- unique best response.
- Let \(s_i \in S_i \) denote state for player \(i \).
- \(S = \prod_i S_i \) and \(s = (s_1, \ldots, s_n) \in S \).
- Assume that \(s \) is common knowledge and observed by econometrician.
- For each agent, \(K + 1 \) state variables \(\epsilon_i(a_i) \) which are private information to each agent.
• Density $f(\epsilon_i)$, i.i.d..
• Period utility for i: $u_i(a, s, \epsilon_i; \theta) = \Pi_i(a_i, a_{-i}, s; \theta) + \epsilon_i(a_i)$
• Utility similar to standard discrete choice model (e.g. multinomial logit).
• Parametric models: $\Pi_i(a_i, a_{-i}, s; \theta)$.
• Often a linear index in the literature.
• Unlike a standard discrete choice model, a_{-i} enters utility.
• Generalizes a standard discrete choice model where agents act in isolation.
• Player i’s decision rule is a function $a_i = \delta_i(s, \epsilon_i)$.
• Note that ϵ_{-i} does not enter since this is private information of other players.
• Define conditional choice probability $\sigma_i(a_i|s)$ as:

$$\sigma_i(a_i = k|s) = \int 1\{\delta_i(s, \epsilon_i) = k\} f(\epsilon_i) d\epsilon_i.$$

• $\sigma_i(a_i = k|s)$ is the probability that i chooses action k conditional on the state variables s that are public information.

• Define the “choice specific expected payoff” as

$$\Pi_i(a_i, s; \theta) = \sum_{a_{-i}} \Pi_i(a_i, a_{-i}, s; \theta)\sigma_{-i}(a_{-i}|s).$$

• Expected utility from a_i, not including preference shock.

• The optimal action for player i satisfies:

$$\sigma_i(a_i|s) = Prob \left\{ \epsilon_i|\Pi_i(a_i, s; \theta) + \epsilon_i(a_i) > \Pi_i(a_j, s; \theta) + \epsilon_i(a_j) \text{ for } j \neq i \right\}.$$
• $\Pi_i(a_i, a_{-i}, s; \theta)$ is often a linear function, e.g.:

$$
\Pi_i(a_i, a_{-i}, s) = \left\{ \begin{array}{ll}
 s' \cdot \beta + \delta \sum_{j \neq i} \mathbf{1}\{a_j = 1\} & \text{if } a_i = 1 \\
 0 & \text{if } a_i = 0
\end{array} \right.
$$

• Mean utility from not entering normalized to zero.
• The term δ measures the influence of j’s choice on i’s entry decision.
• If profits decrease from having another firm enter the market then $\delta < 0$.
• The parameters β measure the impact of the state variables on profits.
• The random error terms $\varepsilon_i(a_i)$ capture shocks to the profitability of entry.
• Choice specific expected payoff satisfies

\[\Pi_i(a_i = 1, s; \theta) = s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s). \]

• Suppose that the error terms are distributed extreme value.

\[\sigma_i(a_i = 1|s) = \frac{\exp(s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s))}{1 + \exp(s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s))} \]

• Full information maximum likelihood:
 - For each \(\beta \), solve for \(\sigma_j(a_j = 1|s; \beta) \) for all \(j = 1, \ldots, n \).
 - Maximize likelihood function:

\[
L(\beta, \delta) = \prod_{t=1}^{T} \prod_{i=1}^{n} \left(\frac{\exp(s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s; \beta))}{1 + \exp(s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s; \beta))} \right)^{1\{a_i, t=1\}} \left(1 - \frac{\exp(s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s; \beta))}{1 + \exp(s' \cdot \beta + \delta \sum_{j \neq i} \sigma_j(a_j = 1|s; \beta))} \right)^{1\{a_i, t=0\}}
\]
• Two step approach: replace $\sigma_j(a_j = 1|s; \beta)$ by $\hat{\sigma}_j(a_j = 1|s)$
• Pseudo likelihood easy to maximize: logit
• Both the first stage estimates $\hat{\sigma}_i(a_i = 1|s)$ and the term $s' \cdot \beta$
 depend on the vector of state variables s.
• Colinearity and identification: Need a covariate that enters the first stage, but not the second stage.
• Rest of paper: generalization
• Nonparametric Identification and estimation.
A1 Assume that the error terms $\epsilon_i(a_i)$ are distributed i.i.d. across actions a_i and agents i, and come from a known parametric family.

- Not possible to allow nonparametric mean utility and error terms at once, even in simple single agent problems (e.g. a probit).
- In Bajari, Hong and Ryan (2005)- single agent model is not identified without an independence assumption.
- Well known that $\Pi_i(0, s)$ not identified: $\sigma_i(a_i|s)$ functions of $\Pi_i(a_i, s) - \Pi_i(0, s)$.
- Suppose $\epsilon_i(a_i)$ is extreme value,

$$
\sigma_i(a_i|s) = \frac{\exp(\Pi_i(a_i, s) - \Pi_i(0, s))}{\sum_{k=0}^{K} \exp(\Pi_i(k, s) - \Pi_i(0, s))}
$$
• Hotz and Miller (1993) inversion, for any k, k':

$$\log(\sigma_i(k|s)) - \log(\sigma_i(k'|s)) = \Pi_i(k, s) - \Pi_i(k', s).$$

• More generally let $\Gamma : \{0, ..., K\} \times S \rightarrow [0, 1]$

$$(\sigma_i(0|s), ..., \sigma_i(K|s)) = \Gamma_i (\Pi_i(1, s) - \Pi_i(0, s), ..., \Pi_i(K, s) - \Pi_i(0, s))$$

• And the inverse Γ^{-1}:

$$(\Pi_i(1, s) - \Pi_i(0, s), ..., \Pi_i(K, s) - \Pi_i(0, s)) = \Gamma_i^{-1} (\sigma_i(0|s), ..., \sigma_i(K|s))$$

• Invert equilibrium choice probabilities to nonparametrically recover $\Pi_i(1, s) - \Pi_i(0, s), ..., \Pi_i(K, s) - \Pi_i(0, s)$.

• Can only learn choice specific value functions up to a first difference. Need normalization

$A2$ For all i and all a_{-i} and s, $\Pi_i(a_i = 0, a_{-i}, s) = 0$.
• Similar to the “outside good” assumption in a single agent model.

• Entry: the utility from not entering is normalized to zero.

• \(\Pi_i(a_i, s) \) is known by our inversion and probabilities \(\sigma_i \) can be observed by econometrician.

• Next step: how to recover \(\Pi_i(a_i, a_{-i}, s) \) from \(\Pi_i(a_i, s) \).

• Requires inversion of the following system:

\[
\Pi_i(a_i, s) = \sum_{a_{-i}} \sigma_{-i}(a_{-i}|s) \Pi_i(a_i, a_{-i}, s), \forall i = 1, \ldots, n, a_i = 1, \ldots, K.
\]

• Hold \(s \) fixed, \(n \times K \times (K + 1)^{n-1} \) unknowns utilities of all agents.

• Only \(n \times (K) \) known expected utilities.
• Obvious solution: impose exclusion restrictions.
• Partition $s = (s_i, s_{-i})$, and suppose
 $\Pi_i(a_i, a_{-i}, s) = \Pi_i(a_i, a_{-i}, s_i)$ depends only on the subvector s_i.

 $$\Pi_i(a_i, s_{-i}, s_i) = \sum_{a_{-i}} \sigma_{-i}(a_{-i}|s_{-i}, s_i)\Pi_i(a_i, a_{-i}, s_i).$$

• Identification: Given each s_i, the second moment matrix of the “regressors” $\sigma_{-i}(a_{-i}|s_{-i}, s_i)$,

 $$E\sigma_{-i}(a_{-i}|s_{-i}, s_i)\sigma_{-i}(a_{-i}|s_{-i}, s_i)'$$

 is nonsingular.
• Needs at least $(K + 1)^{n-1}$ points in the support of the conditional distribution of s_{-i} given s_i.
• Nonparametric Estimation a natural consequence of identification.
Introducing Dynamics

- Infinite Horizon, Stationary, Markov
- Conditional independence:
 - ϵ distributed i.i.d. over time.
 - State variables evolve according to $g(s'|s, a_i, a_{-i})$.
- Now players maximize expected discounted utility using discount factor β.

\[
W_i(s, \epsilon_i; \sigma) = \max_{a_i \in A_i} \left\{ \Pi_i(a_i, s, \epsilon_i) + \epsilon_i(a_i) \right. \\
+ \beta \int \sum_{a_{-i}} W_i(s', \epsilon'_i; \sigma) g(s'|s, a_i, a_{-i}) \sigma_{-i}(a_{-i}|s) f(\epsilon'_i) d\epsilon'_i \}
\]

- Definition: A Markov Perfect Equilibrium is a collection of $\delta_i(s, \epsilon_i)$, $i = 1, \ldots, n$ such that for all i, all s and all ϵ_i, $\delta_i(s, \epsilon_i)$ maximizes $W_i(s, \epsilon_i; \sigma_i, \sigma_{-i})$.
Players choose \(a_i \) to maximize \(V_i(a_i, s) + \epsilon_i(a_i) \).

Choice specific value function

\[
V_i(a_i, s) = \Pi_i(a_i, s) + \beta E\left[V_i(s') | s, a_i \right].
\]

Ex ante value function

\[
V_i(s) = E_{\epsilon_i} \max_{a_i} [V_i(a_i, s) + \epsilon_i(a_i)]
\]

\[
= G(V_i(a_i, s), \forall a_i = 0, \ldots, K)
\]

\[
= G(V_i(a_i, s) - V_i(0, s), \forall a_i = 1, \ldots, K) + V_i(0, s)
\]

Mcfadden’s “social surplus function”.

When the error terms are extremely value distributed

\[
V_i(s) = \log \sum_{k=0}^{K} \exp(V_i(k, s))
\]

\[
= \log \sum_{k=0}^{K} \exp(V_i(k, s) - V_i(0, s)) + V_i(0, s). \]
• Relationship between \(\Pi_i(a_i, s) \) and \(V_i(a_i, s) \):

\[
V_i(a_i, s) = \Pi_i(a_i, s) + \beta E \left[G(V_i(a_i, s'), \forall a_i = 0, \ldots, K) \mid s, a_i \right]
\]

\[
= \Pi_i(a_i, s) + \beta E \left[G(V_i(k, s') - V_i(0, s'), \forall k = 1, \ldots, K) \mid s, a_i \right]
\]

\[
+ \beta E \left[V_i(0, s') \mid s, a_i \right]
\]

• With extreme value distributed error terms

\[
V_i(a_i, s) = \Pi_i(a_i, s) + \beta E \left[\log \sum_{k=0}^{K} \exp \left(V_i(k, s') - V_i(0, s') \right) \right] \mid s, a_i
\]

\[
+ \beta E \left[V_i(0, s') \mid s, a_i \right]
\]

• Hotz and Miller (1993): choice probabilities \(\sigma_i(a_i|s) \) has a one to one relation to the choice specific value functions:

\[
(\sigma_i(0|s), \ldots, \sigma_i(K|s)) = \Gamma (V_i(1, s) - V_i(0, s), \ldots, V_i(K, s) - V_i(0, s))
\]

• Inverse mapping:

\[
(V_i(1, s) - V_i(0, s), \ldots, V_i(K, s) - V_i(0, s)) = \Omega_i (\sigma_i(0|s), \ldots, \sigma_i(K|s))
\]
Example: i.i.d extreme value $f(\epsilon_i)$:

$$
\sigma_i(a_i|s) = \frac{\exp(V_i(a_i, s) - V_i(0, s))}{\sum_{k=0}^{K} \exp(V_i(k, s) - V_i(0, s))}
$$

Inverse mapping:

$$
\log(\sigma_i(k|s)) - \log(\sigma_i(0|s)) = V_i(k, s) - V_i(0, s)
$$

If we know $V_i(0, s)$, $V_i(a_i, s)$ and $\Pi_i(a_i, s)$ is one to one.

Identify $V_i(0, s)$ first. Set $a_i = 0$:

$$
V_i(0, s) = \Pi_i(0, s) + \beta E \left[\log \sum_{k=0}^{K} \exp(V_i(k, s') - V_i(0, s')) | s, 0 \right] + \beta E \left[V_i(0, s') | s, 0 \right]
$$

This is a single contraction mapping unique fixed point iteration.

Add $V_i(0, s)$ to $V_i(k, s) - V_i(0, s)$ to identify all $V_i(k, s)$.

• Then all $\Pi_i(k, s)$ calculated from $V_i(k, s)$.
• Why normalize $\Pi_i(0, s) = 0$?
• Why not $V_i(0, s) = 0$?
• If a firm stays out of the market in period t, current profit 0, but option value of future entry might depend on market size, number of other firms, etc.
• These state variables might evolve stochastically.
• Are there cases where $\Pi_i(0, s) \neq 0$?
• Is this an innocuous normalization?
• Rest of the identification arguments: identical to the static model.
Nonparametric estimation of static model:

- Estimation of Choice Probabilities.
- There are \(t = 1, \ldots, T \) repetitions of the game with actions and states \((a_{i,t}, s_{i,t}), i = 1, \ldots, n\).
- \(\hat{\sigma}_i(k|s) \) estimated using sieve series expansions (see Newey (1990) and Ai and Chen (2003)).
- Alternatively, kernel smoothing or local polynomial regressions.
- Let \(\{q_l(s), l = 1, 2, \ldots\} \) denote a sequence of known basis functions. Could use spline, Fourier Series or orthogonal polynomials.
- Denote the \(1 \times \kappa(T) \) vector of basis functions as
 \[
 q^{\kappa(T)}(s) = (q_1(s), \ldots, q_{\kappa(T)}(s)),
 \]
 and
 \[
 Q_T = (q^{\kappa(T)}(s_1), \ldots, q^{\kappa(T)}(s_T)).
 \]
• Sieve Linear probability (or logit, probit etc)

\[\hat{\sigma}_i(k|s) = \sum_{t=1}^{T} 1(a_{it} = k) q^{\kappa(T)}(s_t)(Q_T'Q_T)^{-1} q^{\kappa(T)}(s). \]

• Typically \(\hat{\sigma}_i(k|s) \) will converge to the true \(\sigma_i(k|s) \) at a nonparametric rate which is slower than \(T^{1/2} \).

• Second Step: Inversion

• Empirical analogue of the Hotz-Miller inversion between choice probabilities and choice specific value functions.

• Specific logit case,

\[\hat{\Pi}_i(k, s_t) - \hat{\Pi}_i(0, s_t) = \log(\hat{\sigma}_i(k|s_t)) - \log(\hat{\sigma}_i(0|s_t)) \]

• Third Step: Recovering The Structural Parameters

• Form an estimate of \(\Pi(a_i, a_{-i}, s_i) \)
• Run a linear local weighted least squares regression, for each i:

$$
\sum_{t=1}^{T} \left(\frac{\hat{\Pi}_i(a_i, s_t) - \sum_{a_{-i}} \hat{\sigma}_{-i}(a_{-i}|s_{-it}, s_i) \Pi_i(a_i, a_{-i}, s_i)}{w(t, s_i)} \right)^2
$$

• $\hat{\Pi}_i(a_i, s_t)$ and $\hat{\sigma}_{-i}(a_{-i}|s_{-it}, s_{it})$ are taken as given from previous steps.

• The nonparametric weights $w(t, s_i)$ can take a variety of forms (e.g. kernel weights).

• Nonparametric approach is robust against misspecification but may suffer from a severe curse of dimensionality.

• Semiparametric alternative might be more practical for most applications.

$$
\Pi_i(a_i, a_{-i}, s_i) = \Phi_i(a_i, a_{-i}, s)' \theta
$$
• The optimal decision rule will take the form:

\[
\sigma_i(a_i|s; \theta) = \frac{\exp(\Phi_i(a_i, s)' \theta)}{\sum_{k=0}^{K} \exp(\Phi_i(k, s)' \theta)}
\]

\[
\Phi_i(k, s) = \sum_{a_{-i}} \sigma_{-i}(a_{-i}|s_{-i}, s_i) \Phi_i(a_i, a_{-i}, s)
\]

• Nonparametric Estimate of the expected basis functions:

\[
\hat{\Phi}_i(k, s) = \sum_{a_{-i}} \hat{\sigma}_{-i}(a_{-i}|s_{-i}, s_i) \Phi_i(a_i, a_{-i}, s)
\]

• Pseudo MLE: use \(\hat{\Phi}_i(k, s)\) in place of \(\Phi_i(k, s)\).

• Or replace local weighted least square with global linear (weighted least square):

\[
\sum_{t=1}^{T} \left(\frac{\hat{\Pi}_i(a_i, s_t) - \sum_{a_{-i}} \hat{\sigma}_{-i}(a_{-i}|s_{-it}, s_i) \Phi_i(a_i, a_{-i}, s)' \beta.}{\sum_{a_{-i}} \hat{\sigma}_{-i}(a_{-i}|s_{-it}, s_i) \Phi_i(a_i, a_{-i}, s)} \right)^2 w(t, s_t)
\]
• Extension to Dynamic models.
• Hotz-Miller inversion recovers \(V_i(k, s) - V_i(0, s) \) instead of \(\Pi_i(k, s) - \Pi_i(0, s) \).
• Nonparametrically compute \(V_i(0, s) \) using
 \[
 \hat{V}_i(0, s) = \beta \hat{E} \left[\log \sum_{k=0}^{K} \exp \left(\hat{V}_i(k, s') - \hat{V}_i(0, s') \right) | s, 0 \right]
 + \beta \hat{E} \left[\hat{V}_i(0, s') | s, 0 \right]
 \]
• Obtain and \(\hat{V}_i(k, s) \) and forward compute \(\hat{\Pi}_i(k, s) \).
• The rest is identical to the static model.
• Apply the results of Newey (1994)-derive appropriate “influence functions”.

• This guarantees that the model converges \(\theta \) at a \(T^{1/2} \) rate and has normal asymptotics.

• The asymptotic distribution is invariant to the choice of method used to estimate the first stage.

• With proper weighting function (need to estimate nonparametrically), can achieve the same efficiency as full information maximum likelihood.

• Above statements hold for both static and dynamic models.
Extensions

- Binary choice linearity probability model: can be estimated using 2SLS in Stata.
- Developed an algorithm to find all equilibrium for the static model.
- The “all solutions homotopy”.
- Verify the regularity conditions required to demonstrate that all solutions are found.
- Useful since games do not generally predict unique solutions.
- Multiple equilibria important when simulating the model.
- Fixed effect type unobserved heterogeneity- Chamberlain’s conditional logit or maximum score ideas.
- Need fixed effects to be a smooth function of s.
Computing Multiple Equilibria

• Given known distribution for the error term $F(\epsilon_i)$ and the mean utility functions $\Pi_i(a_i, a_{-i}, \theta)$, conditional choice probabilities defined by fixed point mappings:

$$\sigma_i(a_i|s) = \Gamma_i \left(\sum_{a_{-i}} \sigma_{a_{-i}} (a_{-i}|s) \left[\Pi_i(k, a_{-i}, s; \theta) - \Pi_i(0, a_{-i}, s; \theta) \right], k = 1, \ldots, K \right)$$

• Given linear mean utility, fixed point mappings:

$$\sigma_i(a_i|s) = \Gamma_i \left(\sum_{a_{-i}} \sigma_{a_{-i}} (a_{-i}|s) \Phi_i(a_i, a_{-i}, s)' \theta, a_i = 1, \ldots, K \right), \quad i = 1, \ldots, n.$$

• $K \times n$ equations and $K \times n$ unknown variables

$$\sigma_i(a_i|s), \forall a_i = 1, \ldots, K, \quad i = 1, \ldots, n.$$
Homotopy Method

• Find all solutions to the fixed point system, for $\sigma = \sigma (s)$:
 \[\sigma - \Gamma (\sigma) = 0, \]

• Homotopy: linear mapping of the form
 \[H(\sigma, \tau) = \tau G(\sigma) + (1 - \tau)(\sigma - \Gamma (\sigma)), \quad \tau \in [0, 1], \]

• $H(\sigma, \tau)$ and $G(\sigma)$: vectors of functions with $n \times K$ component functions
 \[H_{i,a_i}(\sigma, \tau) \text{ and } G_{i,a_i}(\sigma) \text{ for } i = 1, \ldots, n \text{ and } a_i = 1, \ldots, K. \]

• $\tau = 0$: $H(\sigma, 0) = \Gamma (\sigma)$. $\tau = 1$: $H(\sigma, 0) = G(\sigma)$.

• At each τ, denote the solution along a path by $\sigma (\tau)$:
 \[H(\sigma (\tau), \tau) = 0. \]

• Differentiating this homotopy with respect to τ:
 \[\frac{d}{d\tau} H(\sigma (\tau), \tau) = \frac{\partial H}{\partial \tau} + \frac{\partial H}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial \tau}. \]

• Algorithms for numerically tracing this differential equation system.
Multiple Equilibria in Discrete Games

- All solution homotopy from polynomial system of equations.
- Choice of the initial system

$$G_{i,a_i}(\sigma) = \sigma_i(a_i)^{q_{i,a_i}} - 1 = 0 \quad \text{for} \quad i = 1, \ldots, n \quad \text{and} \quad a_i = 1, \ldots, K,$$

- The resulting homotopy mapping

$$H_{i,a_i}(\sigma, \tau) = \tau\{\sigma_i(a_i)^{q_{i,a_i}} - 1\} + (1-\tau)\left(\sigma_i(a_i) - \Gamma_{i,a_i}(\sigma)\right), \quad \tau \in [0, 1].$$

Theorem

For given τ one can pick the power q_{i,a_i} of the initial function such that the homotopy system is regular and path finite given some sequence of converging polyhedra \varnothing_ϵ, $\epsilon \to 0$.
Theorem
Define the sets $H^{-1} = \{(\sigma_r, \sigma_i, \tau) \mid H(\sigma_r, \sigma_i, \tau) = 0\}$ and

\[H^{-1}(\tau) = \{(\sigma_r, \sigma_i) \mid H(\sigma, \tau) = 0\} \quad \text{for} \quad \sigma_r \in \mathbb{R}^{nK}, \quad \text{and} \quad \sigma_i \in \mathbb{R}^{nK}. \]

Note that H is a homotopy of dimension \mathbb{R}^{2nK} that include both real and imaginary parts separately. Also define, for any small ϵ, $\& \epsilon = \bigcup_{i,a_i} \{ |\sigma_{r,i,a_i}| \leq \epsilon \}$ to be the area around the imaginary axis. Then: 1) The set $H^{-1} \cap \{\mathbb{R}^{2nK} \setminus \& \epsilon \times [0, 1]\}$ consists of closed disjoint paths.

2) For any $\tau \in (0, 1]$ there exists a bounded set such that $H^{-1}(\tau) \cap \mathbb{R}^{2nK} \setminus \& \epsilon$ is in that set.

3) For $(\sigma_r, \sigma_i, \tau) \in H^{-1} \cap \{\mathbb{R}^{2nK} \setminus \& \epsilon \times [0, 1]\}$ the homotopy system allows parametrization $H(\sigma_r(s), \sigma_i(s), \tau(s)) = 0$. Moreover, $\tau(s)$ is a monotone function.
Monte Carlo analysis

- Entry game with a small number of players
- Multiple equilibria computation, not about identification.
- Payoff to player i a linear function of the indicator of the rival’s entry ($a_i = 1$), market covariates and random term:

$$U_i(1, a_{-i}) = \theta_1 - \theta_2 \left(\sum_{j \neq i} 1(a_j = 1) \right) + \theta_3 x_1 + \theta_4 x_2 + \epsilon_i(a),$$

$$i = 1, \ldots, n.$$

- Symmetric model, ex-ante probability of entry:

$$P_i = \frac{e^{\theta_1-\theta_2(\sum_{j \neq i} P_j)+\theta_3 x_1+\theta_4 x_2}}{1 + e^{\theta_1-\theta_2(\sum_{j \neq i} P_j)+\theta_3 x_1+\theta_4 x_2}}$$
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Variance</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>2.45</td>
<td>1</td>
<td>Normal</td>
</tr>
<tr>
<td>θ_2</td>
<td>5.0</td>
<td>1</td>
<td>Normal</td>
</tr>
<tr>
<td>θ_3</td>
<td>1.0</td>
<td>1</td>
<td>Normal</td>
</tr>
<tr>
<td>θ_4</td>
<td>-1.0</td>
<td>1</td>
<td>Normal</td>
</tr>
<tr>
<td>x_1</td>
<td>1.0</td>
<td>0.33</td>
<td>Uniform</td>
</tr>
<tr>
<td>x_2</td>
<td>1.0</td>
<td>0.33</td>
<td>Uniform</td>
</tr>
</tbody>
</table>
Table: Results of Monte-Carlo Simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$n = 3$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of equilibria</td>
<td>1.592</td>
<td>1.175</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>0.366</td>
<td>0.362</td>
<td>0.998</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>0.360</td>
<td>0.367</td>
<td>0.995</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>0.363</td>
<td>0.348</td>
<td>0.993</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$n = 4$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of equilibria</td>
<td>1.292</td>
<td>0.777</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>0.278</td>
<td>0.328</td>
<td>0.981</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>0.246</td>
<td>0.320</td>
<td>0.981</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>0.276</td>
<td>0.338</td>
<td>0.999</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>P_4</td>
<td>0.280</td>
<td>0.338</td>
<td>0.987</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$n = 5$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of equilibria</td>
<td>1.106</td>
<td>0.505</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>0.104</td>
<td>0.201</td>
<td>0.964</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>0.138</td>
<td>0.252</td>
<td>0.975</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>0.315</td>
<td>0.338</td>
<td>0.992</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_4</td>
<td>0.356</td>
<td>0.385</td>
<td>0.983</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_5</td>
<td>0.319</td>
<td>0.344</td>
<td>0.982</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table: Frequencies for the numbers of equilibria.

<table>
<thead>
<tr>
<th># of equilibria</th>
<th>Number of cases</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 1$</td>
<td>192</td>
<td>47.93</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>132</td>
<td>33.06</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>64</td>
<td>16.12</td>
</tr>
<tr>
<td>$n = 7$</td>
<td>12</td>
<td>2.89</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>$n = 4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 1$</td>
<td>287</td>
<td>71.84</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>93</td>
<td>23.30</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>20</td>
<td>4.85</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 1$</td>
<td>373</td>
<td>93.16</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>25</td>
<td>6.21</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>2</td>
<td>0.62</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100</td>
</tr>
</tbody>
</table>
Table: Tabulation of Probability of entry of the first player.

<table>
<thead>
<tr>
<th># of equilibria</th>
<th>n = 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
<td>Max</td>
<td>Min</td>
<td></td>
</tr>
<tr>
<td>n = 1</td>
<td>.375</td>
<td>.386</td>
<td>.998</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td>.337</td>
<td>.341</td>
<td>.978</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>n = 5</td>
<td>.353</td>
<td>.322</td>
<td>.936</td>
<td>.006</td>
<td></td>
</tr>
<tr>
<td>n = 7</td>
<td>.601</td>
<td>.367</td>
<td>.957</td>
<td>.050</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># of equilibria</th>
<th>n = 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
<td>Max</td>
<td>Min</td>
<td></td>
</tr>
<tr>
<td>n = 1</td>
<td>.211</td>
<td>.300</td>
<td>.981</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td>.431</td>
<td>.328</td>
<td>.940</td>
<td>.029</td>
<td></td>
</tr>
<tr>
<td>n = 5</td>
<td>.129</td>
<td>.235</td>
<td>.551</td>
<td>.021</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># of equilibria</th>
<th>n = 5</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
<td>Max</td>
<td>Min</td>
<td></td>
</tr>
<tr>
<td>n = 1</td>
<td>.116</td>
<td>.216</td>
<td>.964</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td>.080</td>
<td>.206</td>
<td>.665</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>n = 5</td>
<td>.007</td>
<td>.232</td>
<td>.436</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>