Optimization and Equations:
Connections Between Economics and Numerical Analysis

Dr. Kenneth L. Judd
Hoover Institution

July 18, 2010
Optimization is Fundamental in Economics Modelling

- What is economics:
 - Definition: The study of the allocation of scarce resources
 - Assumption: actors make choices that maximize an objective function
 - Hence, economics problems are constrained optimization problems: maximize objective subject to scarcity constraints

- Examples
 - Consumer choice
 - Social planning problems
 - Principal-agent problems
 - Life-cycle problems
 - Profit maximization
 - Portfolio choice
Equations are Fundamental in Economics Modeling

• Equilibrium: a collection of choices by economic actors that are consistent with scarcity and individual rationality

• Demand equals supply
 – Competitive equilibrium
 – Asset market equilibrium
 – Dynamic market equilibrium

• Nash-Cournot
 – Oligopoly theory
 – Games of incomplete information
 – Games of asymmetric information
 – Political games
All Economic Analysis Uses Optimization and Equations

• Analysis of economic data is an optimization problem

• Unknown parameters are chosen so as to maximize the compatibility between statistical model and data
 – Least squares methods
 – Method of moments
 – Maximum likelihood

• Unknown parameters are chosen to fit data and satisfy equilibrium conditions
 – Structural estimation
 – A constrained optimization problem
Numerical Analysis is Applied Economics

- Numerical analysis is the development of computational tools that best use scarce computational resources to accomplish a computational task

- Scarce resources
 - Computer time
 - Programmer time
 - Programmer ability

- Objective
 - Accuracy
 - Speed

- Technologies
 - Memory
 - Processor
 - Communication links
Computation is About Using Computers

- You need to understand what computers do
 - Numbers - stored with infinite precision
 - Operations - executed with small errors
 - Storage methods and cache management
 - Interpreted versus compiled code

- As computer technologies change, the choice of algorithms changes
 - Single precision to double precision
 - Expensive memory to cheap memory
 - Serial to parallel processing (e.g., GPUs)
Progress in Hardware

- Moore’s law for semiconductors (Moore gives Moore’s law about another 10-15 years)
- Optical computing
- Quantum computing

![Graph showing trends in computation speed: flops vs. year]

Figure 1: Trends in computation speed: flops vs. year

- Economists usually constrain themselves to using personal computers.
Hardware and Algorithms: Substitutes or Complements?

- Typical economist view: speed allows you to avoid learning about computation and methods

- Computational mathematicians’ view
 - There are many possible methods, varying in fixed costs and marginal costs
 - Faster computers make it rational to invest in the fixed costs
 * Development costs
 * Use high fixed-cost methods that reduce marginal costs
 - Hardware speed and algorithm development are complements

- Historical pattern
 - Speed doubles every two years.
 - Algorithm efficiency grows at a similar, sometimes faster, rate
Objectives of ICE10

- Acquaint PhD students with the current state-of-the-art algorithms and software.
- Teach the basic concepts behind algorithm development, now and in the future.