Computing Equilibria of Repeated And Dynamic Games

Şevin Yeltekin

Carnegie Mellon University

ICE 2012

July 2012
Introduction

- Repeated and dynamic games have been used to model dynamic interactions in:
 - Industrial organization,
 - Principal-agent contracts,
 - Social insurance problems,
 - Political economy games,
 - Macroeconomic policy-making.
Introduction

- Repeated and dynamic games have been used to model dynamic interactions in:
 - Industrial organization,
 - Principal-agent contracts,
 - Social insurance problems,
 - Political economy games,
 - Macroeconomic policy-making.
Introduction

- Repeated and dynamic games have been used to model dynamic interactions in:
 - Industrial organization,
 - Principal-agent contracts,
 - Social insurance problems,
 - Political economy games,
 - Macroeconomic policy-making.
Introduction

• Repeated and dynamic games have been used to model dynamic interactions in:
 • Industrial organization,
 • Principal-agent contracts,
 • Social insurance problems,
 • Political economy games,
 • Macroeconomic policy-making.
Introduction

- Repeated and dynamic games have been used to model dynamic interactions in:
 - Industrial organization,
 - Principal-agent contracts,
 - Social insurance problems,
 - Political economy games,
 - Macroeconomic policy-making.
Introduction

• Repeated and dynamic games have been used to model dynamic interactions in:
 • Industrial organization,
 • Principal-agent contracts,
 • Social insurance problems,
 • Political economy games,
 • Macroeconomic policy-making.
Introduction

• These problems are difficult to analyze unless severe simplifying assumptions are made:

 • Equilibrium selection
 • Functional form (cost, technology, preferences)
 • Size of discounting
Introduction

- These problems are difficult to analyze unless severe simplifying assumptions are made:
 - Equilibrium selection
 - Functional form (cost, technology, preferences)
 - Size of discounting
Introduction

• These problems are difficult to analyze unless severe simplifying assumptions are made:

 • Equilibrium selection

 • Functional form (cost, technology, preferences)

 • Size of discounting
Introduction

- These problems are difficult to analyze unless severe simplifying assumptions are made:
 - Equilibrium selection
 - Functional form (cost, technology, preferences)
 - Size of discounting
Goal

- Examine *entire set* of pure-strategy equilibrium values in repeated and dynamic games
- Propose a general algorithm for computation that can handle
 - large state spaces,
 - flexible functional forms,
 - any discounting,
 - flexible informational assumptions.
Approach

- APS show that set of equilibrium payoffs a fixed point of an operator similar to Bellman operator in DP.

- APS method not directly implementable on a computer. Requires approximation of arbitrary sets.

- Our method allows for
 - parsimonious representation of sets/correspondences on a computer
 - preserves monotonicity of underlying operator.
Contributions

• Develop a general algorithm that
 • computes pure-strategy equilibrium value sets of repeated and dynamic games,
 • provides upper and lower bounds for equilibrium values and hence computational error bounds,
 • computes equilibrium strategies.

• Based on: Judd-Yeltekin-Conklin (2003), Sleet and Yeltekin(2003), Yeltekin-Judd (2011)
REPEATED GAMES
Stage Game

- A_i – player i’s action space, $i = 1, \ldots, N$
- $A = \times_{i=1}^{N} A_i$ – action profiles
- $\Pi_i(a)$ – Player i payoff, $i = 1, \ldots, N$
- Maximal and minimal payoffs

$$\underline{\Pi}_i \equiv \min_{a \in A} \Pi_i(a), \quad \bar{\Pi}_i \equiv \max_{a \in A} \Pi_i(a)$$
Supergame G^∞

- **Action space:** A^∞

- h_t: t-period history: $\{a_s\}_{s=0}^{t-1}$ with $a_s \in A$

- **Set of t-period histories:** H_t

- **Preferences:**

 $$w_i(a^\infty) = \frac{1 - \delta}{\delta} E_0 \sum_{t=1}^{\infty} \delta^t \Pi_i(a_t).$$

- **Strategies:** $\{\sigma_{i,t}\}_{t=0}^{\infty}$ with $\sigma_{i,t} : H_t \rightarrow A_i$.

- **Subgame Perfect Equilibrium Payoffs**

 $$V^* \subset \mathcal{W} = \times_{i=1}^{N} [\Pi_i, \bar{\Pi}_i]$$
Example 1: Prisoner’s Dilemma

- Static game: player 1 (2) chooses row (column)

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>4, 4</td>
<td>0, 6</td>
</tr>
<tr>
<td>Down</td>
<td>6, 0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- Static Nash equilibrium
 - (Down, Right) with payoff (0, 0)

- Suppose δ is close to 1
- G^∞ includes (Up, Left) forever with payoff (4, 4)
 - Rational if all believe a deviation causes permanent reversion to (Down, Right)

- This is just one of many equilibria.
Static Equilibrium

- Static game

<table>
<thead>
<tr>
<th></th>
<th>11, c₁₁</th>
<th>12, c₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>21, c₂₁</td>
<td>22, c₂₂</td>
<td></td>
</tr>
</tbody>
</table>

b_{ij} (c_{ij}) is player 1’s (2’s) return if player 1 (2) plays i (j).
Recursive Formulation

- Each SPE payoff vector is supported by
 - profile of actions consistent with Nash today
 - continuation payoffs that are SPE payoffs

- Each stage of subgame perfect equilibrium of G^∞ is a static equilibrium to some one-shot game A, augmented by values from δV^*:

$$
\begin{array}{c|c}
\delta^* b_{11} + \delta u_{11}, \delta^* c_{11} + \delta w_{11} & \delta^* b_{12} + \delta u_{12}, \delta^* c_{12} + \delta w_{12} \\
\delta^* b_{21} + \delta u_{21}, \delta^* c_{21} + \delta w_{21} & \delta^* b_{22} + \delta u_{22}, \delta^* c_{22} + \delta w_{22}
\end{array}
$$

$$\delta^* = 1 - \delta$$
Steps: Computing the Equilibrium Value Set

1. Define an operator that maps today’s equilibrium values to tomorrow’s.

2. Show operator is monotone and equilibrium payoff set is its largest fixed point. [Requires some work. We use Tarski’s FP theorem.]

3. Define approximation for operator and sets that
 - Represent sets parsimoniously on computer
 - Preserve monotonicity of operator

4. Define appropriately chosen initial set, apply operator until convergence.
Step 1: Operator

\(B^* : \mathcal{P} \to \mathcal{P} \).

- Let \(\mathcal{W} \in \mathcal{P} \).

\[
B^*(\mathcal{W}) = \bigcup_{(a,w)} \left\{ (1 - \delta) \Pi(a) + \delta w \right\}
\]

subject to:

\[
w \in \mathcal{W}
\]

and for each \(\forall i \in N, \forall \tilde{a} \in A_i \)

\[
(1 - \delta) \Pi_i(a) + \delta w_i \geq \Pi_i(\tilde{a}, a_{-i}) + \delta w_i
\]

where \(w_i = \min \{ w_i \mid w \in \mathcal{W} \} \).
Step 2: Self-generation

A set \mathcal{W} is self-generating if:

$$\mathcal{W} \subseteq B^*(\mathcal{W})$$

An extension of the arguments in APS establishes the following:

- Any self-generating set is contained within V^*,
- V^* itself is self-generating.
Step 2: Factorization

\[b \in B^*(\mathcal{W}) \] if there is an action profile \(a \) and continuation payoff \(w \in \mathcal{W} \), s.t.

- \(b \) is value of playing \(a \) today and receiving continuation value \(w \),
- for each \(i \), player \(i \) will choose to play \(a_i \)
- punishment value drawn from set \(\mathcal{W} \).
Step 2: Properties of B^*

- Monotonicity: B^* is monotone in the set inclusion ordering:
 \[
 \text{If } W_1 \subseteq W_2, \text{ then } B^*(W_1) \subseteq B^*(W_2)
 \]

- Compactness: B^* preserves compactness.

- Implications:
 1) V^* is the maximal fixed point of the mapping B^*;
 2) V^* can be obtained by repeatedly applying B^* to any set that contains V^*.
Step 3: Approximation

- V^* is not necessarily a convex set
 - We need to approximate both V^* and the correspondence $B^*(W)$
 - As a first step, use public randomization to convexify the equilibrium value set.
Step 3: Public randomization

- Public lottery with support contained in \mathcal{W}.
- Public lottery specifies continuation values for the next period
 - Lottery determines Nash equilibrium for next period.
 - Strategies now condition on histories of actions and lottery outcomes.
- Modified operator:

$$B(W) = B(co(\mathcal{W})) = co(B^*(co(\mathcal{W}))),$$

where $W = co(\mathcal{W})$
- V equilibrium value set of supergame with public randomization.
- B is monotone and V is the largest fixed point of B.
Step B: Approximations

- Modified operator B preserves monotonicity and compactness.

- Produces a sequence of convex sets that converge to equilibrium.

- Two approximations:
 - outer approximation
 - inner approximation
Piecewise-Linear **Inner** Approximation

- Suppose we have M points $Z = \{(x_1, y_1), \ldots, (x_M, y_M)\}$ on the boundary of a convex set W.

- The convex hull of Z, $co(Z)$, is contained in W and has a piecewise linear boundary.

- Since $co(Z) \subseteq W$, we will call $co(Z)$ the inner approximation to W generated by Z.
Suppose we have \(n \) points \(Z = \{(x_1, y_1), \ldots, (x_n, y_n)\} \) on the boundary of a convex set \(W \).

The convex hull of \(Z \), \(\text{co}(Z) \), is contained in \(W \) and has a piecewise linear boundary, as illustrated by the polygon in Figure 1.

Since \(\text{co}(Z) \subseteq W \), we will call \(\text{co}(Z) \) the inner approximation to \(W \) generated by \(Z \).

Inner approximations
Piecewise-Linear **Outer** Approximation

- Suppose we have
 - M points $Z = \{(x_1, y_1), ..., (x_M, y_M)\}$ on the boundary of W, and
 - corresponding set of subgradients, $R = \{(s_1, t_1), ..., (s_M, t_M)\}$;
- Therefore,
 - the plane $s_i x + t_i y = s_i x_i + t_i y_i$ is tangent to W at (x_i, y_i), and
 - the vector (s_i, t_i) with base at (x_i, y_i) points away from W.

Computing Equilibria of Repeated And Dynamic Games
Outer approximation

Suppose we have n points $Z = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ on the boundary of W, and the corresponding set of subgradients, $\mathcal{R} = \{(s_1, t_1), \ldots, (s_n, t_n)\}$; therefore, the plane $s_i x + t_i y = s_i x_i + t_i y_i$ is tangent to W at (x_i, y_i), and the vector (s_i, t_i) with a point away from W.

A convex set and supporting hyperplanes
Key Properties of Approximations

Definition

Let $B^I(W)$ be an inner approximation of $B(W)$ and $B^O(W)$ be an outer approximation of $B(W)$; that is $B^I(W) \subseteq B(W) \subseteq B^O(W)$.

Lemma

Next, for any $B^I(W)$ and $B^O(W)$, (i) $W \subseteq W'$ implies $B^I(W) \subseteq B^I(W')$, and (ii) $W \subseteq W'$ implies $B^O(W) \subseteq B^O(W')$.
Step 4: Initial Guesses and Convergence

Proposition

Suppose $B^O(\cdot)$ is an outer monotone approximation of $B(\cdot)$. Then the maximal fixed point of B^O contains V. More precisely, if $W \supseteq B^O(W) \supseteq V$, then $B^O(W) \supseteq B^O(B^O(W)) \supseteq \cdots \supseteq V$.

Lemma

$W \supseteq B^O(W) \supseteq V$.
Proposition

Suppose $B^I(\cdot)$ is an inner monotone approximation of $B(\cdot)$. Then the maximal fixed point of B^I is contained in V. More precisely, if $W \subseteq B^I(W) \subseteq V$, then $B^I(W) \subseteq B^I(B^I(W)) \subseteq \cdots \subseteq V$.

Lemma

$W \subseteq B^I(W) \subseteq V$.
Fixed Point

These results together with the monotonicity of the B operator, implies the following theorem.

Theorem

Let V be the equilibrium value set. Then (i) if $W_0 \supseteq V$ then $B^O(W_0) \supseteq B^O(B^O(W_0)) \supseteq \cdots \supseteq V$, and (ii) if $W_0 \subset B^I(W_0)$ then $B^I(W_0) \subset B^I(B^I(W_0)) \subset \cdots \subset V$. Furthermore, any fixed point of B^I is contained in the maximal fixed point of B, which in turn is contained in the maximal fixed point of B^O.
Monotone Inner Hyperplane Approximation

Input: Points \(Z = \{z_1, \ldots, z_M\} \) such that \(W = \text{co}(Z) \).

Step 1 Find extremal points of \(B(W) \):

For each search subgradient \(h_\ell \in H, \ell = 1, \ldots, L \).

(1) For each \(a \in A \), solve the linear program

\[
\begin{align*}
 c_\ell(a) & = \max_w h_\ell \cdot [(1 - \delta)\Pi(a) + \delta w] \\
 \text{(i)} & \quad w \in W \\
 \text{(ii)} & \quad (1 - \delta)\Pi^i(a) + \delta w_i \geq (1 - \delta)\Pi^*_i(a_{-i}) + \delta w_i, \quad i = 1, \ldots, N
\end{align*}
\]

Let \(w_\ell(a) \) be a \(w \) value which solves (1).
Monotone Inner Hyperplane Approximation cont’d

(2) Find best action profile $a \in A$ and continuation value:

$$
a^*_\ell = \arg \max \{ c_\ell(a) | a \in A \}
$$

$$
z^{+}_\ell = (1 - \delta)\Pi(a^*_\ell) + \delta w_\ell(a^*_\ell)
$$

Step 2 Collect set of vertices $Z^+ = \{ z^{+}_\ell | \ell = 1, ..., L \}$, and define $W^+ = co(Z^+)$.
The Outer Approximation, Hyperplane Algorithm

Outer approximation: Same as inner approximation except record normals and continuation values z^+_ℓ
Outer vs. Inner Approximations

- Any equilibrium is in the inner approximation
 - Can construct an equilibrium strategy from V.
 - There exist multiple such strategies
The Outer Approximation, Hyperplane Algorithm

- No point outside of outer approximation can be an equilibrium
 - Can demonstrate certain equilibrium payoffs and actions are not possible
 - E.g., can prove that joint profit maximization is not possible
Error Bounds

- Difference between inner and outer approximations is approximation error.
- Computations actually constitute a proof that something is in or out of equilibrium payoff set - not just an approximation.
- Difference is small in many examples.
ErrorBounds
Convergence: Repeated Prisoner’s Dilemma
Hyperplanes: Repeated Prisoner’s Dilemma
Example 2: Repeated Cournot Duopoly

- Firm i sales: q_i
- Firm i unit cost: $c_i = 0.6$
- Demand: $p = \max\{6 - q_1 - q_2, 0\}$
- Profit: $\Pi_i(q_1, q_2) = q_i(p - c_i)$
- Nash Eqm. Payoff of Stage Game: (3.24, 3.24)
- Shared Monopoly Payoff: (3.64, 3.64)
Repeated Cournot

![Graph showing repeated Cournot game with payoffs and strategies marked.](image-url)
Example 2: Repeated Cournot Duopoly

- Set of eqm payoffs quite large.
- Shared monopoly profits (+ and ⋆) are achievable (for \(\delta = 0.8 \))
- When costs are positive, threats far worse than reversion to Nash.
Strategies: Repeated Cournot
Strategies: Repeated Cournot

Actions, promises, and threats on the boundary of V, $c = 0.6$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>$(v_1(\ell), v_2(\ell))$</th>
<th>$(w_1(\ell), w_2(\ell))$</th>
<th>(q_1, q_2)</th>
<th>$\Pi(q_1, q_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.97 3.30</td>
<td>3.75 3.52</td>
<td>1.7 0.9</td>
<td>4.8 2.4</td>
</tr>
<tr>
<td>8</td>
<td>3.71 3.57</td>
<td>3.72 3.55</td>
<td>1.3 1.3</td>
<td>3.6 3.6</td>
</tr>
<tr>
<td>10</td>
<td>3.64 3.64</td>
<td>3.64 3.64</td>
<td>1.3 1.3</td>
<td>3.6 3.6</td>
</tr>
<tr>
<td>27</td>
<td>0.29 6.76</td>
<td>0.36 6.65</td>
<td>0.0 3.0</td>
<td>0.0 7.1</td>
</tr>
<tr>
<td>46</td>
<td>0.00 0.00</td>
<td>0.77 0.77</td>
<td>5.1 5.1</td>
<td>-3.0 -3.0</td>
</tr>
<tr>
<td>60</td>
<td>4.75 0.00</td>
<td>6.71 0.32</td>
<td>5.1 2.1</td>
<td>-3.0 -1.3</td>
</tr>
</tbody>
</table>
Example 2: Repeated Cournot Duopoly

- Unlike APS’s imperfect monitoring example, eqm. paths are not bang-bang.
- Continuation of worst eqm is not worst. Movement towards cooperation?
- Shared Monopoly: Markov and stationary.
- Low profits today for Firm i are supported by higher continuation values.
Next Meeting

- Dynamic Games
- Using algorithm to find endogenous state spaces.
- Extensions to planner+continuum of agents.
- Examples from applications in IO, Macro.